3668: [Noi2014]起床困难综合症
3668: [Noi2014]起床困难综合症
https://www.lydsy.com/JudgeOnline/problem.php?id=3668
分析:
每一位分开考虑。
算出每一位为1,计算完后是否产生贡献,每一位为0是否会产生贡献。
然后从高位考虑:
- 如果这一位为0,并且可以产生(1<<i)的贡献,那么就让它为0。
- 如果这一位位1,可以产生贡献,并且在小于等于m,就让它为1。
- 不可以产生贡献的话,直接为0.
如果在某一步,可以比m小了,就是m这位为1,而答案是0了,那么后面的就可以随便选了,否则,这位选的数必须小于等于m的这位。
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<vector>
#include<queue>
#include<map>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ; char s[N][];
int a[N], f[N], n, m; int Calc(int x) {
for (int i=; i<=n; ++i)
if (s[i][] == 'A') x &= a[i];
else if (s[i][] == 'O') x |= a[i];
else if (s[i][] == 'X') x ^= a[i];
return x;
} int main() {
n = read(), m = read();
for (int i=; i<=n; ++i) {
scanf("%s%d", s[i], &a[i]);
}
int t = Calc();
for (int i=; i>=; --i) f[i] = Calc( << i) & ( << i);
int ans = ;
bool flag = false;
for (int i=; i>=; --i) {
if ((t >> i) & ) {
ans += ( << i);
if ((m >> i) & ) flag = true;
}
else if (f[i]) {
if (flag) ans += f[i];
else if ((m >> i) & ) ans += f[i];
}
else if ((m >> i) & ) flag = true;
}
cout << ans;
return ;
}
3668: [Noi2014]起床困难综合症的更多相关文章
- BZOJ 3668: [Noi2014]起床困难综合症( 贪心 )
之前以为xor,or,and满足结合律...然后连样例都过不了 早上上体育课的时候突然想出来了...直接处理每一位是1,0的最后结果, 然后从高位到低位贪心就可以了... 滚去吃饭了.. ------ ...
- BZOJ 3668: [Noi2014]起床困难综合症【贪心】
3668: [Noi2014]起床困难综合症 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2326 Solved: 1305[Submit][St ...
- 【BZOJ】3668: [Noi2014]起床困难综合症(暴力)
http://www.lydsy.com/JudgeOnline/problem.php?id=3668 这题很简单.............. 枚举每一位然后累计即可.. QAQ,第一次以为能1A, ...
- 【刷题】BZOJ 3668 [Noi2014]起床困难综合症
Description 21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争.通过研究相关文献,他找 ...
- BZOJ 3668: [Noi2014]起床困难综合症
Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2693 Solved: 1563 [Submit][Status][Discuss] Descript ...
- bzoj3668: [Noi2014]起床困难综合症
从高位到低位枚举期望的应该是ans最高位尽量取一.如果该数最高位为o的话能够取得1直接更新ans否则判断该位取1是否会爆m不会的话就加上. #include<cstdio> #includ ...
- NOI2014 起床困难综合症
3668: [Noi2014]起床困难综合症 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 225 Solved: 153[Submit][Stat ...
- bzoj千题计划238:bzoj3668: [Noi2014]起床困难综合症
http://www.lydsy.com/JudgeOnline/problem.php?id=3668 这..一位一位的来就好了呀 #include<cstdio> #include&l ...
- [Bzoj3668][Noi2014]起床困难综合症(位运算)
3668: [Noi2014]起床困难综合症 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2612 Solved: 1500[Submit][St ...
随机推荐
- reactnative 原生组件通信原理
http://www.csdn.net/article/2015-11-27/2826345-compare-React-Native-with-ExMobi 原生组件通信原理 React Nativ ...
- codeforces Flipping Game 题解
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/.未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...
- 九.mysql数据库多实例安装mysqld_multi [start,stop,report]
经常应为系统硬件短缺,导致需要在同一台硬件服务器上面安装多个mysql实例.之前的文章四·安装mysql-5.7.16-linux-glibc2.5-x86_64.tar.gz(基于Centos7源码 ...
- 2018 Multi-University Training Contest 4 Problem J. Let Sudoku Rotate 【DFS+剪枝+矩阵旋转】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6341 Problem J. Let Sudoku Rotate Time Limit: 2000/100 ...
- 4.spring:@Profile,AOP
Profile: 可以根据当前的环境,动态激活和切换一系列的组件功能 指定组件在那个环境下才能被注册到容器中,不指定任何环境下都能注册到 1.加了环境标识的bean只有环境激活的时候才能注册到容器中 ...
- rnnlm学习
rnn-lm: 1.论文 2.公式推导 2.1 http://blog.csdn.net/a635661820/article/details/44462315 3. 工具 lstm-lm 1. 论文 ...
- CopyOnWriteArrayList介绍
CopyOnWrite容器即写时复制的容器.通俗的理解是当我们往一个容器添加元素的时候,不直接往当前容器添加,而是先将当前容器进行Copy,复制出一个新的容器,然后新的容器里添加元素,添加完元素之后, ...
- ssm框架基础搭建
1项目搭建环境 windows10+eclipse4.8+tomcat7+jdk1.7 2.使用maven搭建 1)首先eclipse配置好maven环境 2)file--new--other 3) ...
- Knowledge Point 20180305 详解精度问题
1.1 精度与基本数据类型运算的深度解析 我们在探讨Java基本数据类型时多次提到过精度的问题,那么计算机中的精度究竟是什么样的,为什么我们有时候的计算和我们预期的不同呢?下面我们通过精度来了解: 1 ...
- OpenGL 3 and OpenGL 4 with GLSL
Here are some OpenGL samples with advance features. NeHe OpenGL tutorial focus on the OpenGL fixed p ...