ZOJ-3318
Time Limit: 1 Second Memory Limit: 32768 KB
There are n cities in the dream country. Let's use integers from 1 to n to denote the cities. There are some roads between cities. To some strange, all the roads are bidirectional and the roads change from time to time. You have m maps of the country of different time. You are going to the dream country soon and you want to start your journey at city s and finish it at city t. Though you cannot predict the condition when you get there, you think it is useful to study the maps carefully. After studying the maps, you find that all the roads in all maps have the same length and there is an s-t path in each map. You want to choose an s-t path in each map and the paths are relatively short. Further more you don't want too many changes in the paths.
Formally suppose you have chosen an s-t path in each map, namely P1, P2,...Pm. Let's define a path's length to be simply the number of edges in it and use LEN to denote the total length of all the paths. Let's define a function as follow: CHANGE(P1, P2,...Pm) is the number of indices i (0 < i < m) for which Pi != Pi+1. Let's define the cost function as follow: COST(P1, P2,...Pm) = LEN + CHANGE(P1, P2,...Pm). You are supposed to find the minimum cost.
Input
There are multiple test cases. The first line of input is an integer T (0 < T < 205) indicating the number of test cases. Then T test cases follow. The first line of each test case is 4 integers n, m, s, t (1 < n, m <= 30, 0 < s, t <= n, s != t). Then there are m map descriptions. The first line of each map description is an integer R, the number of roads in the map (0 < R <= n * (n - 1) / 2). Each of the next R lines contains two integers a, b, the two cities that road connects( 0 < a, b <= n, a != b). You can assume that for each test case there is an s-t path in each map.
Output
For each test case, output in a line the minimum cost defined above.
Sample Input
2
3 3 2 3
2
1 2
3 1
3
1 2
2 3
3 2
2
2 1
2 3
4 2 1 4
3
1 2
2 3
3 4
3
1 2
2 3
3 4
Sample Output
5
6
Hint
Test case 1: three paths are 2-1-3, 2-3, 2-3.
Test case 2: both paths are 1-2-3-4.
Author: CAO, Peng
Source: The 10th Zhejiang University Programming Contest
Submit
#include <iostream>
#include <stdio.h>
#include<cmath>
#include<algorithm>
#include<string.h>
#include<queue>
#include<set>
#define maxn 40
using namespace std;
int dist[maxn];
int mark[maxn][maxn];
int Edge[maxn][maxn];
int mmap[maxn][maxn][maxn];
int dp[maxn];
int n,m,s,t,flag;
int bfs()
{
memset(dist,0x3f,sizeof(dist));
flag = dist[0];
dist[s] = 0;
queue<int>que;
while(!que.empty()) que.pop();
que.push(s);
while(!que.empty())
{
int tmp = que.front();
que.pop();
for(int i=1;i<=n;i++)
{
if(Edge[tmp][i] == 1 && dist[i] > dist[tmp] + 1)
{
dist[i] = dist[tmp] + 1;
que.push(i);
}
}
}
return dist[t];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif // ONLINE_JUDGE
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d %d %d %d",&n,&m,&s,&t);
int R,u,v;
memset(mmap,0,sizeof(mmap));
memset(mark,0,sizeof(mark));
memset(dp,0,sizeof(dp));
for(int i=0; i<m; i++)
{
scanf("%d",&R);
for(int j=0; j<R; j++)
{
scanf("%d %d",&u,&v);
mmap[i][u][v] = 1;
mmap[i][v][u] = 1;
}
}
for(int i=0; i<m; i++)
{
memset(Edge,1,sizeof(Edge));
for(int j=i; j<m; j++)
{
for(int k=1; k<=n; k++)
{
for(int t= 1; t <=n; t++)
{
Edge[k][t] = Edge[k][t] & mmap[j][k][t];
}
}
mark[i][j] = bfs();
}
}
dp[0] = mark[0][0];
for(int i=1;i<=m;i++)
{
if(mark[0][i] != flag) dp[i] = mark[0][i] *(i+1);
else dp[i] = flag;
for(int j=0;j<i;j++)
{
if(mark[j+1][i] != flag)
dp[i] = min(dp[i] ,dp[j] + mark[j+1][i]*(i-j) + 1);
}
}
printf("%d\n",dp[m-1]);
}
return 0;
}
ZOJ-3318的更多相关文章
- ZOJ People Counting
第十三届浙江省大学生程序设计竞赛 I 题, 一道模拟题. ZOJ 3944http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=394 ...
- ZOJ 3686 A Simple Tree Problem
A Simple Tree Problem Time Limit: 3 Seconds Memory Limit: 65536 KB Given a rooted tree, each no ...
- ZOJ Problem Set - 1394 Polar Explorer
这道题目还是简单的,但是自己WA了好几次,总结下: 1.对输入的总结,加上上次ZOJ Problem Set - 1334 Basically Speaking ac代码及总结这道题目的总结 题目要求 ...
- ZOJ Problem Set - 1392 The Hardest Problem Ever
放了一个长长的暑假,可能是这辈子最后一个这么长的暑假了吧,呵呵...今天来实验室了,先找了zoj上面简单的题目练练手直接贴代码了,不解释,就是一道简单的密文转换问题: #include <std ...
- ZOJ Problem Set - 1049 I Think I Need a Houseboat
这道题目说白了是一道平面几何的数学问题,重在理解题目的意思: 题目说,弗雷德想买地盖房养老,但是土地每年会被密西西比河淹掉一部分,而且经调查是以半圆形的方式淹没的,每年淹没50平方英里,以初始水岸线为 ...
- ZOJ Problem Set - 1006 Do the Untwist
今天在ZOJ上做了道很简单的题目是关于加密解密问题的,此题的关键点就在于求余的逆运算: 比如假设都是正整数 A=(B-C)%D 则 B - C = D*n + A 其中 A < D 移项 B = ...
- ZOJ Problem Set - 1001 A + B Problem
ZOJ ACM题集,编译环境VC6.0 #include <stdio.h> int main() { int a,b; while(scanf("%d%d",& ...
- zoj 1788 Quad Trees
zoj 1788 先输入初始化MAP ,然后要根据MAP 建立一个四分树,自下而上建立,先建立完整的一棵树,然后根据四个相邻的格 值相同则进行合并,(这又是递归的伟大),逐次向上递归 四分树建立完后, ...
- ZOJ 1958. Friends
题目链接: ZOJ 1958. Friends 题目简介: (1)题目中的集合由 A-Z 的大写字母组成,例如 "{ABC}" 的字符串表示 A,B,C 组成的集合. (2)用运算 ...
- ZOJ
某年浙大研究生考试的题目. 题目描述: 对给定的字符串(只包含'z','o','j'三种字符),判断他是否能AC. 是否AC的规则如下:1. zoj能AC:2. 若字符串形式为xzojx,则也能AC, ...
随机推荐
- NOIP2017金秋冲刺训练营杯联赛模拟大奖赛第一轮Day2题解
上星期打的...题有点水,好多人都AK了 T1排个序贪心就好了 #include<iostream> #include<cstring> #include<cstdlib ...
- bzoj Usaco补完计划(优先级 Gold>Silver>资格赛)
听说KPM初二暑假就补完了啊%%% 先刷Gold再刷Silver(因为目测没那么多时间刷Silver,方便以后TJ2333(雾 按AC数降序刷 ---------------------------- ...
- GSM之AT操作命令详解20160615
因工作接触到GSM模块,所以收集整理了一下关于操作GSM模块的AT命令的资料: 1.AT的历史与应用 1.1 AT的历史AT命令集是由拨号调制解调器(MODEM)的发明者贺氏公司(Hayes)为了控制 ...
- JS传递中文参数出现乱码的解决办法
一.window.open() 乱码: JS中使用window.open("url?param="+paramvalue)传递参数出现乱码,提交的时候,客户端浏览器URL中显示参数 ...
- ACE主动对象模式(1)
转载于:http://www.cnblogs.com/TianFang/archive/2006/12/11/589168.html 主动对象模式用于降低方法执行和方法调用之间的耦合.该模式描述了另外 ...
- Codeforces Round #345 (Div. 2) A
A. Joysticks time limit per test 1 second memory limit per test 256 megabytes input standard input o ...
- [解决] Error Code: 1044. Access denied for user 'root'@'%' to database
今天在测试集群用的mysql上,遇到个权限的问题: SQLException : SQL state: 42000 com.mysql.jdbc.exceptions.jdbc4.MySQLSynta ...
- Git版本管理1-安装配置和同步
原文载于youdaonote,有图片: http://note.youdao.com/share/?id=79a2d4cae937a97785bda7b93cbfc489&type=note ...
- c# 折半查找法实现代码
] { , , , , , , , , , , , , , , , , , , , }; , i; string j, k; , ); ) { k = String.Format("未找到{ ...
- javascript实现正整数分数约分
//m,n为正整数的分子和分母 function reductionTo(m, n) { var arr = []; if (!isInteger(m) || !isInteger(n)) { con ...