一眼题...输出分数格式才是这题的难点QAQ

  学习了分数结构体...

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
struct fra{ll u,d;fra(ll a=,ll b=){u=a,d=b;}}f[maxn][maxn];
int n,m;
bool mp[maxn][maxn];
int readch()
{
char ch=getchar();
while(ch==' '||ch=='\n'||ch=='\t'||ch=='\r')ch=getchar();
return ch=='*';
}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void sim(fra &x){ll t=gcd(x.u,x.d);x.u/=t;x.d/=t;}
fra operator+(fra x,fra y)
{
ll t=gcd(x.d,y.d);
fra c=fra(y.d/t*x.u+x.d/t*y.u,x.d/t*y.d);
return sim(c),c;
}
fra operator*(fra x,fra y)
{
fra c=fra(x.u*y.u,x.d*y.d);
return sim(c),c;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
mp[i][j]=readch();
f[][]=fra(,);
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
if(mp[i][j])f[i+][j]=f[i+][j]+f[i][j]*fra(,),f[i+][j+]=f[i+][j+]+f[i][j]*fra(,);
else f[i+][j+]=f[i+][j+]+f[i][j];
printf("%lld/%lld",f[n+][m+].u,f[n+][m+].d);
return ;
}

bzoj1867: [Noi1999]钉子和小球(DP)的更多相关文章

  1. bzoj千题计划189:bzoj1867: [Noi1999]钉子和小球

    http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j]   ...

  2. 2018.09.24 bzoj1867: [Noi1999]钉子和小球(概率dp)

    传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/ ...

  3. [bzoj1867][Noi1999][钉子和小球] (动态规划)

    Description Input 第1行为整数n(2<=n<=50)和m(0<=m<=n).以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉 ...

  4. BZOJ 1867 [Noi1999]钉子和小球 DP

    想状态和钉子的位置如何匹配想了半天...后来发现不是一样的吗$qwq$ 思路:当然是$DP$啦 提交:>5次(以为无故$RE$,实则是先乘后除爆了$long\space long$) 题解: 若 ...

  5. bzoj 1867: [Noi1999]钉子和小球【dp】

    设f[i][j]为掉到f[i][j]时的概率然后分情况随便转移一下就好 主要是要手写分数比较麻烦 #include<iostream> #include<cstdio> usi ...

  6. [POJ1189][BZOJ1867][CODEVS1709]钉子和小球

    题目描述 Description 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1).每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且 ...

  7. POJ1189钉子和小球(DP)

    对钉子DP,如果钉子存在DP[i+1][j]+=DP[i][j]; DP[i+1][j+1]+=DP[i][j]; 如果不存在DP[i+2][j+1]+=4*DP[i][j]; 见代码:(有一个比较坑 ...

  8. POJ-1189 钉子和小球(动态规划)

    钉子和小球 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7452 Accepted: 2262 Description 有一个 ...

  9. codevs 1709 钉子和小球

    1709 钉子和小球 1999年NOI全国竞赛 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 查看运行结果题目描述 Description有一个三角形木板 ...

随机推荐

  1. Java 递归 反射 正则表达式

    一 递归 1. 就是函数自身调用自身 (就是在栈内存中不断的加载同一个函数) 2. 什么时候用递归呢? 当一个功能被重复使用 而每一次使用该功能时的参数不确定 都由上次的功能元素结果来确定 简单说: ...

  2. Eclipse 常用快捷键 个性设置(Mac)

    推荐编程使用Mac 要是非要一个原因 那就是Apple工程师用Mac Google工程师也用Mac 1. 常用快捷键 Mac自带 Command + ←  跳到当前文本行头 Command + →  ...

  3. H5应用程序缓存浅谈及实际测试

    应用程序缓存能做什么? 可以在脱离网络的条件下离线访问. 减少读取服务器文件,减轻服务器的访问压力. 优化网站打开速度. 如何启用应用缓存? 第一步:给服务器添加新的MIME:扩展名:.appcach ...

  4. lintcode39 恢复旋转排序数组

    恢复旋转排序数组   给定一个旋转排序数组,在原地恢复其排序. 您在真实的面试中是否遇到过这个题? Yes 说明 什么是旋转数组? 比如,原始数组为[1,2,3,4], 则其旋转数组可以是[1,2,3 ...

  5. python常用命令—‘\r’

    # \r 默认表示将输出的内容返回到第一个指针,这样的话,后面的内容会覆盖前面的内容 如常用的显示程序完成进度!!

  6. Dev c++ 调试步骤

    不能调试的时候,修改下列地方: 1.在“工具”->编译选项->”Add following commands when calling complier”下面的编辑框里写入:-g3 2.在 ...

  7. Python3获取新浪微博内容乱码问题

    用python获取新浪微博最近发布内容的时候调用 public_timeline()函数的返回值是个jsonDict对象,首先需要将该对象通过json.dumps函数转换成字符串,然后对该字符串用GB ...

  8. Python3实现机器学习经典算法(四)C4.5决策树

    一.C4.5决策树概述 C4.5决策树是ID3决策树的改进算法,它解决了ID3决策树无法处理连续型数据的问题以及ID3决策树在使用信息增益划分数据集的时候倾向于选择属性分支更多的属性的问题.它的大部分 ...

  9. SpringBoot日志配置(详解) 涉及控制台输出日志、生成日志文件、日志级别修改、hibernate日志不输出

    写在前面 本篇主要讲述日志配置,看完本篇可以解决下述问题, 控制台输出日志.生成日志文件.日志级别修改.hibernate日志不输出 Git Demo Path:https://github.com/ ...

  10. window.open()与window.showModalDialog区别

    window.open()与window.showModalDialog区别 弹出窗口两种方式:    1.window.showModalDialog:      var feature = &qu ...