[BZOJ1721][Usaco2006 Mar]Ski Lift 缆车支柱
Description
Farmer Ron in Colorado is building a ski resort for his cows (though budget constraints dictate construction of just one ski lift). The lift will be constructed as a monorail and will connect a concrete support at the starting location to the support at the ending location via some number of intermediate supports, each of height 0 above its land. A straight-line segment of steel connects every pair of adjacent supports. For obvious reasons, each section of straight steel must lie above the ground at all points. Always frugal, FR wants to minimize the number of supports that he must build. He has surveyed the N (2 <= N <= 5,000) equal-sized plots of land the lift will traverse and recorded the integral height H (0 <= H <= 1,000,000,000) of each plot. Safety regulations require FR to build adjacent supports no more than K (1 <= K <= N - 1) units apart. The steel between each pair of supports is rigid and forms a straight line from one support to the next. Help FR compute the smallest number of supports required such that: each segment of steel lies entirely above (or just tangent to) each piece of ground, no two consecutive supports are more than K units apart horizontally, and a support resides both on the first plot of land and on the last plot of land.
科罗拉州的罗恩打算为他的奶牛们建造一个滑雪场,虽然需要的设施仅仅是一部缆车.建造一部缆车,需要从山脚到山顶立若干根柱子,并用钢丝连结它们.你可以认为相对于地面,柱子的高度可以忽略不计.每相邻两根柱子间都有钢丝直接相连.显然,所有钢丝的任何一段都不能在地面之下. 为了节省建造的费用,罗恩希望在工程中修建尽可能少的柱子.他在准备修建缆车的山坡上迭定了N(2≤N≤5000)个两两之间水平距离相等的点,并且测量了每个点的高度H(O≤日≤10^9).并且,按照国家安全标准,相邻两根柱子间的距离不能超过K(1≤K≤N-1)个单位长度.柱子间的钢丝都是笔直的. 罗恩希望你帮他计算一下,在满足下列条件的情况下,他至少要修建多少根柱子:首先,所有的柱子都必须修建在他所选定的点上,且每一段钢丝都必须高于地面或者正好跟地面相切.相邻两根柱子的距离不大于K个单位长度.当然,在第一个点与最后一个点上一定都要修建柱子.
Input
* Line 1: Two space-separate integers, N and K
* Lines 2..N+1: Line i+1 contains a single integer that is the height of plot i.
第1行:两个整数N和K,用空格隔开.
第2到N+1行:每行包括一个正整数,第i+l行的数描述了第i个点的高度.
Output
* Line 1: A single integer equal to the fewest number of lift towers FR needs to build subject to the above constraints
输出一个整数,即罗恩最少需要修建的柱子的数目.
Sample Input
0
1
0
2
4
6
8
6
8
8
9
11
12
Sample Output
#include<iostream>
#include<cstdio>
#include<cstring>
#define inf 1e9
using namespace std;
int n,k;
int h[],f[];
int main()
{
cin>>n>>k;
for(int i=;i<=n;i++) cin>>h[i];
memset(f,0x3f,sizeof(f));
f[]=;
for(int i=;i<=n;i++)
{
double maxn=-inf;
for(int j=i+;j<=min(i+k,n);j++)
{
double now=(double)(h[j]-h[i])/(j-i);
if(now>=maxn)
{
f[j]=min(f[j],f[i]+);
maxn=now;
}
}
}
cout<<f[n];
return ;
}
[BZOJ1721][Usaco2006 Mar]Ski Lift 缆车支柱的更多相关文章
- luogu 4909 [Usaco2006 Mar]Ski Lift 缆车支柱 动态规划
可以出模拟赛T1? #include <bits/stdc++.h> #define N 5002 #define inf 1000000 #define setIO(s) freopen ...
- BZOJ1721 Ski Lift 缆车支柱
Description Farmer Ron in Colorado is building a ski resort for his cows (though budget constraints ...
- 【USACO2006 Mar】滑雪缆车 skilift
[USACO2006 Mar] 滑雪缆车 skilift Time Limit 1000 msMemory Limit 131072 KBytes Description 科罗拉多州的罗恩打算为奶牛建 ...
- [BZOJ1659][Usaco2006 Mar]Lights Out 关灯
[BZOJ1659][Usaco2006 Mar]Lights Out 关灯 试题描述 奶牛们喜欢在黑暗中睡觉.每天晚上,他们的牲口棚有L(3<=L<=50)盏灯,他们想让亮着的灯尽可能的 ...
- Bzoj 1657: [Usaco2006 Mar]Mooo 奶牛的歌声 单调栈
1657: [Usaco2006 Mar]Mooo 奶牛的歌声 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 631 Solved: 445[Submi ...
- BZOJ1657: [Usaco2006 Mar]Mooo 奶牛的歌声
1657: [Usaco2006 Mar]Mooo 奶牛的歌声 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 489 Solved: 338[Submi ...
- 1657: [Usaco2006 Mar]Mooo 奶牛的歌声
1657: [Usaco2006 Mar]Mooo 奶牛的歌声 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 526 Solved: 365[Submi ...
- bzoj1722: [Usaco2006 Mar] Milk Team Select 产奶比赛 树形dp
题目链接 bzoj1722: [Usaco2006 Mar] Milk Team Select 产奶比赛 题解 dp[i][j][0 / 1] 以i为根的子数中 相邻点对选了j个的最大价值 代码 #i ...
- 1722: [Usaco2006 Mar] Milk Team Select 产奶比赛
1722: [Usaco2006 Mar] Milk Team Select 产奶比赛 https://www.lydsy.com/JudgeOnline/problem.php?id=1722 分析 ...
随机推荐
- Database Designer
DBDesigner http://fabforce.net/dbdesigner4/index.php DB Designer Fork http://sourceforge.net/project ...
- 第八篇:文件共享和使用 dup 函数创建新描述符的区别
前言 文件共享是指同时打开一个文件 用 dup 函数能对指定文件描述符再创建一个新的描述符,且这个新的描述符和旧的描述符指向的是同一个文件. 这两种行为有什么区别呢?下面给出的两张文件系统的图形象的解 ...
- JStorm开发经验+运维经验总结
1.开发经验总结 ——12 Sep 2014 · 8 revisions 在jstorm中, spout中nextTuple和ack/fail运行在不同的线程中, 从而鼓励用户在nextTuple里 ...
- IE、FF脚本兼容性问题
1.window.event IE有这个对象:FF没有,FF通过参数传递 2.获取事件源 IE:srcElement FF:target 3.添加与去除事件 IE:element.attachEven ...
- CentOS安装Apache-2.4.25+安全配置
注:以下所有操作均在CentOS 6.5 x86_64位系统下完成. #准备工作# 在安装Nginx之前,请确保已经使用yum安装了各基础组件,并且配置了www用户和用户组,具体见<CentOS ...
- iOS核心动画详解(一)
前言 这篇文章主要是针对核心动画(Core Animation)的讲解,不涉及UIView的动画.因为内容较多,这篇文章会分为几个章节来进行介绍.本文主要是介绍核心动画的几个类之间的关系和CAAnim ...
- (转) RabbitMQ学习之延时队列
http://blog.csdn.net/zhu_tianwei/article/details/53563311 在实际的业务中我们会遇见生产者产生的消息,不立即消费,而是延时一段时间在消费.Rab ...
- XP系统中IIS访问无法显示网页,目前访问网站的用户过多。终极解决办法
无法显示网页 目前访问网站的用户过多. -------------------------------------------------------------------------------- ...
- requests 中response如何改变编码格式
查看初始编码 首先查看拿到的response编码格式: (就不放代码了,因为此例需要用到cookie,可自行找个网站具体测试) 可见初始编码为:ISO-8859-1 修改编码 初始编码: 修改后编码: ...
- tornado 第一篇
一:异步和非阻塞IO 实时的web特性通常需要每个用户一个大部分时间,在传统的同步web服务器中,这意味着需要给每个用户分配一个专用的线程,这样的开销是十分巨大 tornado使用啦一种单线程事件循 ...