BNU 33693——Problemsetting——————【枚举+最大流】
Problemsetting
64-bit integer IO format: %lld Java class name: Main
None
Graph Theory
2-SAT
Articulation/Bridge/Biconnected Component
Cycles/Topological Sorting/Strongly Connected Component
Shortest Path
Bellman Ford
Dijkstra/Floyd Warshall
Euler Trail/Circuit
Heavy-Light Decomposition
Minimum Spanning Tree
Stable Marriage Problem
Trees
Directed Minimum Spanning Tree
Flow/Matching
Graph Matching
Bipartite Matching
Hopcroft–Karp Bipartite Matching
Weighted Bipartite Matching/Hungarian Algorithm
Flow
Max Flow/Min Cut
Min Cost Max Flow
DFS-like
Backtracking with Pruning/Branch and Bound
Basic Recursion
IDA* Search
Parsing/Grammar
Breadth First Search/Depth First Search
Advanced Search Techniques
Binary Search/Bisection
Ternary Search
Geometry
Basic Geometry
Computational Geometry
Convex Hull
Pick's Theorem
Game Theory
Green Hackenbush/Colon Principle/Fusion Principle
Nim
Sprague-Grundy Number
Matrix
Gaussian Elimination
Matrix Exponentiation
Data Structures
Basic Data Structures
Binary Indexed Tree
Binary Search Tree
Hashing
Orthogonal Range Search
Range Minimum Query/Lowest Common Ancestor
Segment Tree/Interval Tree
Trie Tree
Sorting
Disjoint Set
String
Aho Corasick
Knuth-Morris-Pratt
Suffix Array/Suffix Tree
Math
Basic Math
Big Integer Arithmetic
Number Theory
Chinese Remainder Theorem
Extended Euclid
Inclusion/Exclusion
Modular Arithmetic
Combinatorics
Group Theory/Burnside's lemma
Counting
Probability/Expected Value
Others
Tricky
Hardest
Unusual
Brute Force
Implementation
Constructive Algorithms
Two Pointer
Bitmask
Beginner
Discrete Logarithm/Shank's Baby-step Giant-step Algorithm
Greedy
Divide and Conquer
Dynamic Programming
Tag it!
It's well-known that different programming contests require different kind of problems. For example, maximal array size for TopCoder problem is only 50, and you definitely can not give a Suffix Tree problem to IOI because children will not have a chance to solve it (except of some touristic-inclined ones). Thus not every problem is acceptable for every contest.
You are preparing problemsets for N different contests. These contests require different number of problems, depending of type. For example, ACM ICPC style problemset usually has 10 problems, TopCoder SRM - 5 and so on.
Luckily you have already prepared M different problems. For each problem you have determined a set of contests you can give that problem to. Also you know the required number of problems for each contest.
Find out the maximal number of different contests for which you can simultaneously compose complete problemsets from the given set of problems. All problems in the problemsets must be unique, i.e. no problem can be used twice in different problemsets.
Input
The input file contains several test cases.
The first line of each test case contains 2 integers N and M (1 < N < 15, 0 < M < 50) - the number of different contests and the number of prepared problems. Each of the followingN lines contains the name of contest, followed by the required number of problems for that contest. The name of a contest consists of lower - and uppercase Latin letters and/or digits, is not empty and does not exceed 100 characters. Contest names are case-sensitive. It's guaranteed that all contest names will be pairwise different. The required number of problems does not exceed 100.
Each of the following M lines contains a (possibly empty) list of acceptable contest names for each problem, separated by a single space. It's guaranteed that all contest names will be correct (i.e., noted in the previous section of the current test case) and unique.
The line containing two zeroes indicates the end of the input file.
For each test case print an answer for that case on a new line, as shown in the sample output.
Sample Input
4 5
IOI 3
IPSC 2
TopCoder 2
SEERC 10
IOI
IPSC TopCoder
IOI IPSC
IOI IPSC
TopCoder SEERC
1 1
SampleContest 1
SampleContest
0 0
Sample Output
Case #1: 2
Case #2: 1
Source
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<string>
#include<iostream>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
const int mod = 1e9+7;
const int maxn = 100;
const int INF = 0x3f3f3f3f; int Map[55][55];
int need[55];
struct Edge{
int from, to, next, cap, flow;
Edge(){}
Edge(int _from, int _to, int _cap, int _flow):from(_from), to(_to), cap(_cap),flow(_flow){}
};
int contest_table[20];
vector<Edge>edges;
vector<int>G[maxn];
void AddEdge(int from, int to, int cap){
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
int m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
int capacity[maxn];
struct Dinic{
int s, t; // bool vis[maxn];
int d[maxn];
int cur[maxn];
bool BFS(){
memset(vis,0,sizeof(vis));
queue<int>Q;
Q.push(s);
d[s] = 0;
vis[s] = 1;
while(!Q.empty()){
int x = Q.front(); Q.pop();
for(int i = 0; i < G[x].size(); ++i){
Edge &e = edges[G[x][i]];
if(!vis[e.to] && e.cap > e.flow){
vis[e.to] = 1;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a){
if(x == t || a == 0) return a;
int flow = 0, f;
for(int &i = cur[x]; i < G[x].size(); i++){
Edge &e = edges[G[x][i]];
if(d[x] + 1 == d[e.to]&&(f = DFS(e.to, min(a,e.cap - e.flow))) > 0){
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
}
int Maxflow(int s,int t){
this->s = s; this->t = t;
int flow = 0;
while(BFS()){
memset(cur,0,sizeof(cur));
flow += DFS(s, INF);
}
return flow;
}
}; int n, m;
int constructG(int enumc){
for(int i = 0; i <= n+m+10; i++){
G[i].clear();
}
edges.clear();
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
if(Map[i][j]){
AddEdge(i, n+j, 1);
}
}
}
for(int i = 1; i <= m; i++){
AddEdge(n+i,n+m+1,1);
}
int ret = 0;
for(int i = 1; i <= n; i++){
if(enumc&1){
AddEdge(0, i, capacity[i]);
ret += need[i];
}
enumc /= 2;
}
return ret;
}
int main(){
string str;
int cas = 0;
char s[100000];
while(scanf("%d%d",&n,&m)!=EOF&&(n+m) != 0){
map<string,int>mp;
int c;
for(int i = 1; i <= n; i++){
scanf("%s",s);
str = s;
mp[str] = i;
scanf("%d",&need[i]);
}
memset(Map,0,sizeof(Map));
memset(capacity,0,sizeof(capacity));
getchar(); getchar();
for(int i = 1; i <= m; i++){
str = "";
gets(s);
int len = strlen(s);
for(int j = 0; j < len-1; j++) {
if(s[j]==' '&&j!=0){
if(s[j-1]!=' '){
Map[mp[str]][i]=1;
capacity[mp[str]]++;
}
str="";
}else if(s[j]!=' ') str+=s[j];
}
if(str!="") {
Map[mp[str]][i]=1;
capacity[mp[str]]++;
}
}
int enumc = (int)pow((double)2,(double)n);
int ans = 0;
Dinic ansf;
for(int i = 0; i < enumc; i++){
int j = i, cnum = 0, c = 0;
while(j){
if(j&1)
cnum++;
j = j >> 1;
}
if(ans >= cnum) continue;
int needMaxf = constructG(i);
int Maxf = ansf.Maxflow(0,n+m+1);
if(Maxf >= needMaxf){
ans = cnum;
}
}
printf("Case #%d: ",++cas);
printf("%d\n",ans);
}
return 0;
}
BNU 33693——Problemsetting——————【枚举+最大流】的更多相关文章
- hust-1024-dance party(最大流--枚举,可行流判断)
题意: 舞会上,男孩和女孩配对,求最大完全匹配个数,要求每个人最多与k个不喜欢的人配对,且每次都和不同的人配对. 分析: 将一个点拆成3个点. b, b1, b2. 从1到n枚举ans, 判可 ...
- poj 2699 The Maximum Number of Strong Kings 枚举 最大流
题目链接 题意 对于一个竞赛图(有向完全图),其顶点是选手,边是比赛,边\(e=(u,v)\)代表该场比赛中\(u\)战胜\(v\). 现定义选手的分数为其战胜的人的个数(即竞赛图中点的出度).并且定 ...
- hdu4807枚举费用流
题意: 给你一个有向图,每条边上都有每一时刻的最大流量,有k个人在点0,他们要去点n-1,问你最晚到达的那个人最快要多久. 思路: 这个题目做了很多次,用过费用流,也用过最大流,结 ...
- poj2699 转化为可行性判定问题+二分枚举+最大流
The Maximum Number of Strong Kings Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2302 ...
- USACO 5.4 Telecowmunication(最大流+枚举)
面对最小割之类的题目,完全木想法... 枚举+最大流..复杂度很大了...居然很快的就过了.. /* ID: cuizhe LANG: C++ TASK: telecow */ #include &l ...
- POJ3228 并查集或二分最大流枚举答案
忘记写题意了.这题题意:给出每个地点的金矿与金库的数量,再给出边的长度.求取最大可通过边长的最小权值使每个金矿都能运输到金库里. 这题和之前做的两道二分枚举最大流答案的问法很相识,但是这里用最大流速度 ...
- Intel RealSense SDK 简翻
:first-child{margin-top:0!important}img.plugin{box-shadow:0 1px 3px rgba(0,0,0,.1);border-radius:3px ...
- ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)
[题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...
- 最小截断[AHOI2009]
[题目描述] 宇宙旅行总是出现一些意想不到的问题,这次小可可所驾驶的宇宙飞船所停的空间站发生了故障,这个宇宙空间站非常大,它由N个子站组成,子站之间有M条单向通道,假设其中第i(1<=i< ...
随机推荐
- vmware开发包之vSphere Management SDK
vSphere Management SDK关于vmware管理等相关功能的.net和java的代码示例. 在其5.5的解压包中 eam:esx agent management表示esx虚机生产环境 ...
- [raspberry p3] [suse] 安装maven
[raspberry p3] [suse] 安装maven 配置package repositroy, 添加devel:tools:building vim /etc/zypp/repos.d/ope ...
- Partition--分区Demo
--============================================================= --创建分区函数 --创建500分区,分区键按照1000依次递增 CRE ...
- html中的table导出Excel
演示地址: http://www.jq22.com/yanshi3312 具体代码: <!DOCTYPE html> <html lang="zh-CN"> ...
- 结构(struct)
结构是程序员定义的数据类型,非常类似于类.都包含数据成员和函数成员. 区别:1.类是引用类型,而结构是值类型 2.结构是隐式密封的,也就是结构不能被派生. 结构类型和所有值类型一样,含有自己的数据.需 ...
- Rabbitmq消息服务器通讯异常: name must not be blank
前人挖坑,后人填! 倒霉的遇到一个破项目,该 项目使用了 RabbitMQ 消息队列向服务器发送消息, 但在发送中老是报 RabbitMQ 服务器异常! 呃,查看了服务器,服务器好好的,日志中却是这样 ...
- 903. Valid Permutations for DI Sequence
We are given S, a length n string of characters from the set {'D', 'I'}. (These letters stand for &q ...
- Objective-C适用C数学函数 <math.h>
在实际工作中有些程序不可避免的需要使用数学函数进行计算,比如地图程序的地理坐标到地图坐标的变换.Objective-C做为ANSI C的扩展,使用C标准库头文件<math.h>中定义的数学 ...
- 博弈论教程(A Course in Game Theory)摘录
P4 在我们所研究的模型中,决策主体往往要在不确定条件下进行决策.参与人可能: 不能确定环境的客观因素: 对博弈中发生的事件不很清楚: 不能确定别的不确定参与人的行动: 不能确定别的参与人的推理. 为 ...
- 题目1042:Coincidence(最长公共子序列)
问题来源 http://ac.jobdu.com/problem.php?pid=1042 问题描述 给定两个字符串,求其最长公共子序列(LCS). 问题分析 网上是在是太多这类问题的文章了,随便贴一 ...