做完后,看了解题报告,思路是一样的。我就直接粘过来吧

最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是,同时X部中每个点到Y部的每个点都有一条边,假设X部有x个点,Y部有y个点,有x+y=n,同时边数F=x*y+x*(x-1)+y*(y-1),整理得:F=N*N-N-x*y,当x+y为定值时,二者越接近,x*y越大,所以要使得边数最多,那么X部和Y部的点数的个数差距就要越大,所以首先对于给定的有向图缩点,对于缩点后的每个点,如果它的出度或者入度为0,那么它才有可能成为X部或者Y部,所以只要求缩点之后的出度或者入度为0的点中,包含节点数最少的那个点,令它为一个部,其它所有点加起来做另一个部,就可以得到最多边数的图了

//109MS 	2916KB
#include <stdio.h>
#include <string.h>
#define LL long long
const int M = 100005;
const int inf = 0x3f3f3f3f;
struct Edge
{
int to,nxt;
} edge[M]; int head[M],low[M],dfn[M],stack[M+10];
int vis[M],out[M],in[M],belong[M];
int scc,cnt ,top,ep;
LL n,m;
int min (int a,int b)
{
return a > b ? b : a;
}
void addedge (int cu,int cv)
{
edge[ep].to = cv;
edge[ep].nxt = head[cu];
head[cu] = ep ++;
} void Tarjan(int u)
{
int v;
dfn[u] = low[u] = ++cnt;
stack[top++] = u;
vis[u] = 1;
for (int i = head[u]; i != -1; i = edge[i].nxt)
{
v = edge[i].to;
if (!dfn[v])
{
Tarjan(v);
low[u] = min(low[u],low[v]);
}
else if (vis[v]) low[u] = min(low[u],dfn[v]);
}
if (dfn[u] == low[u])
{
++scc;
do
{
v = stack[--top];
vis[v] = 0;
belong[v] = scc;
}
while (u != v);
}
} void solve()
{
int u,v;
scc = top = cnt = 0;
memset (vis,0,sizeof(vis));
memset (dfn,0,sizeof(dfn));
memset (out,0,sizeof(out));
memset (in,0,sizeof(in));
for (u = 1; u <= n; u ++)
if (!dfn[u])
Tarjan(u); for (u = 1; u <= n; u ++)
{
for (int i = head[u]; i != -1; i =edge[i].nxt)
{
v = edge[i].to;
if (belong[u] != belong[v])
{
out[belong[u]] ++;
in[belong[v]] ++;
}
}
}
int num[M],Min;
memset (num,0,sizeof(num));
for (u = 1; u <= n; u ++)
if (!in[belong[u]]) num[belong[u]] ++;
for (u = 1; u <= scc; u ++)
if (num[u]!= 0&&num[u]<Min)
Min = num[u]; memset (num,0,sizeof(num));
for (u = 1; u <= n; u ++)
if (!out[belong[u]]) num[belong[u]] ++;
for (u = 1; u <= scc; u ++)
if (num[u]!= 0&&num[u]<Min)
Min = num[u];
if (scc == 1)
{
printf ("-1\n");
return ;
}
LL ans = n*(n-1)-Min*(n-Min) - m;
printf ("%I64d\n",ans);
}
int main ()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
int T,u,v,cnt = 0;
scanf ("%d",&T);
while (T --)
{
scanf ("%I64d%I64d",&n,&m);
ep = 0;
memset (head,-1,sizeof(head));
for (int i = 0; i < m; i++)
{
scanf ("%d%d",&u,&v);
addedge(u,v);
}
printf ("Case %d: ",++cnt);
solve();
}
return 0;
}

hdu 4635 Strongly connected(Tarjan)的更多相关文章

  1. HDU 4635 Strongly connected (Tarjan+一点数学分析)

    Strongly connected Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) ...

  2. HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】

    Strongly connected Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  3. HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. hdu 4635 Strongly connected 强连通缩点

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...

  5. HDU 4635 Strongly connected(强连通)经典

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  6. hdu 4635 Strongly connected (tarjan)

    题意:给一个n个顶点m条弧的简单有向图(无环无重边),求最多能够加入多少条弧使得加入后的有向图仍为简单有向图且不是一个强连通图.假设给的简单有向图本来就是强连通图,那么输出-1. 分析: 1.用tar ...

  7. hdu 4635 Strongly connected

    http://acm.hdu.edu.cn/showproblem.php?pid=4635 我们把缩点后的新图(实际编码中可以不建新图 只是为了概念上好理解)中的每一个点都赋一个值 表示是由多少个点 ...

  8. hdu 4635 Strongly connected(强连通)

    考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...

  9. HDU 4635 Strongly connected (强连通分量)

    题意 给定一个N个点M条边的简单图,求最多能加几条边,使得这个图仍然不是一个强连通图. 思路 2013多校第四场1004题.和官方题解思路一样,就直接贴了~ 最终添加完边的图,肯定可以分成两个部X和Y ...

随机推荐

  1. hdu 3715

    一个很简单的2-sat的题: 不过比较难想到: 其实也不是很难,可能接触的少了吧! #include<cstdio> #include<vector> #define maxn ...

  2. 今日网站突然报错,mysql的故障

    Access denied for user 'root'@'localhost' (using password: YES) 错误位置 FILE: /var/www/html/ThinkPHP/Li ...

  3. Nagios 邮箱告警的方式太OUT了!

    一般来讲,在安装完 Nagios 后,我们做的第一件最正确的事,就是设置它的邮件通知,对吧.因为如果没有这一步骤的话,你怎么能够知道什么时候会出现问题呢? 伴随着成功的初始安装,你即将是你司唯一一个能 ...

  4. python:UnicodeDecodeError: ‘ascii’ codec can’t decode byte 0xef in position xxx: ordinal not in range(128)

    执行sql_cmd = "select * from item_base where item_id in " + item_ids_str时报错 solve: import sy ...

  5. android TabActivity的局限性 是否还有存在的必要性

     TabActivity的局限性 是否还有存在的必要性 其实谷歌有此举动,我们也应该早就想到了,为什么会这么说呢?那就要从TabActivity的原理开始说起了. 做个假定先: 比如我们最外面的Act ...

  6. 判断微信内置浏览器的UserAgent

    要区分用户是通过"微信内置浏览器"还是"原生浏览器"打开的WebApp, 可以通过navigator.userAgent来进行判断. 以下是对各种平台上微信内置 ...

  7. gdb查看虚函数表、函数地址

    1. 查看函数地址     看函数在代码的哪一行,使用info line就可以看到类似下面这中输出 点击(此处)折叠或打开 (gdb) info line a.cpp:10 Line 10 of &q ...

  8. 应付描述性弹性域 Description Flexfield

    (N) AP > Setup > Flexfield > Description > Segments To define your descriptive flexfield ...

  9. Hadoop家族学习路线图

    主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项 ...

  10. BZOJ_1607_ [Usaco2008_Dec]_Patting_Heads_轻拍牛头_(筛数)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1607 给出一组n个数,求每个数能被多少个其他的数整除. 分析 暴力一点的做法就是每个数去筛它的 ...