【HDU 3435】 A new Graph Game (KM|费用流)
A new Graph Game
Problem DescriptionAn undirected graph is a graph in which the nodes are connected by undirected arcs. An undirected arc is an edge that has no arrow. Both ends of an undirected arc are equivalent--there is no head or tail. Therefore, we represent an edge in an undirected graph as a set rather than an ordered pair.
Now given an undirected graph, you could delete any number of edges as you wish. Then you will get one or more connected sub graph from the original one (Any of them should have more than one vertex).
You goal is to make all the connected sub graphs exist the Hamiltonian circuit after the delete operation. What’s more, you want to know the minimum sum of all the weight of the edges on the “Hamiltonian circuit” of all the connected sub graphs (Only one “Hamiltonian circuit” will be calculated in one connected sub graph! That is to say if there exist more than one “Hamiltonian circuit” in one connected sub graph, you could only choose the one in which the sum of weight of these edges is minimum).
For example, we may get two possible sums:
(1) 7 + 10 + 5 = 22
(2) 7 + 10 + 2 = 19
(There are two “Hamiltonian circuit” in this graph!)InputIn the first line there is an integer T, indicates the number of test cases. (T <= 20)
In each case, the first line contains two integers n and m, indicates the number of vertices and the number of edges. (1 <= n <=1000, 0 <= m <= 10000)
Then m lines, each line contains three integers a,b,c ,indicates that there is one edge between a and b, and the weight of it is c . (1 <= a,b <= n, a is not equal to b in any way, 1 <= c <= 10000)OutputOutput “Case %d: “first where d is the case number counted from one. Then output “NO” if there is no way to get some connected sub graphs that any of them exists the Hamiltonian circuit after the delete operation. Otherwise, output the minimum sum of weight you may get if you delete the edges in the optimal strategy.Sample Input33 4
1 2 5
2 1 2
2 3 10
3 1 73 2
1 2 3
1 2 42 2
1 2 3
1 2 4Sample OutputCase 1: 19
Case 2: NO
Case 3: 6HintIn Case 1:
You could delete edge between 1 and 2 whose weight is 5.In Case 2:
It’s impossible to get some connected sub graphs that any of them exists the Hamiltonian circuit after the delete operation.
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 1010
#define Maxm 10010
#define INF 0xfffffff struct node
{
int x,y,c,next;
}t[Maxm*];int len;
int first[Maxn]; void ins(int x,int y,int c)
{
t[++len].x=x;t[len].y=y;t[len].c=-c;
t[len].next=first[x];first[x]=len;
} int mymin(int x,int y) {return x<y?x:y;}
int mymax(int x,int y) {return x>y?x:y;} int lx[Maxn],ly[Maxn];
int slack[Maxn],match[Maxn];
bool visx[Maxn],visy[Maxn];
int n; bool ffind(int x)
{
visx[x]=;
for(int i=first[x];i;i=t[i].next) if(!visy[t[i].y])
{
int y=t[i].y;
if(t[i].c==lx[x]+ly[y])
{
visy[y]=;
if(!match[y]||ffind(match[y]))
{
match[y]=x;
return ;
}
}
else slack[y]=mymin(slack[y],lx[x]+ly[y]-t[i].c);
}
return ; } bool solve()
{
memset(match,,sizeof(match));
memset(ly,,sizeof(ly));
for(int i=;i<=n;i++)
{
lx[i]=-INF;
// printf("%d\n",i);
for(int j=first[i];j;j=t[j].next)
{
// printf("%d\n",j);
lx[i]=mymax(lx[i],t[j].c); }
}
int i;
for(i=;i<=n;i++)
{
for(int j=;j<=n;j++) slack[j]=INF;
while()
{
memset(visx,,sizeof(visx));
memset(visy,,sizeof(visy));
if(ffind(i)) break;
int delta=INF;
for(int j=;j<=n;j++) if(!visy[j])
delta=mymin(delta,slack[j]);
if(delta==INF) return ;
for(int j=;j<=n;j++)
{
if(visx[j]) lx[j]-=delta;
if(visy[j]) ly[j]+=delta;
else if(slack[j]!=INF) slack[j]-=delta;
}
}
}
return ;
} int main()
{
int T,kase=;
scanf("%d",&T);
while(T--)
{
int m;
scanf("%d%d",&n,&m);
len=;
memset(first,,sizeof(first));
for(int i=;i<=m;i++)
{
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
ins(x,y,c);ins(y,x,c);
}
printf("Case %d: ",++kase);
if(solve())
{
int ans=;
for(int i=;i<=n;i++) ans+=lx[i]+ly[i];
printf("%d\n",-ans);
}
else printf("NO\n");
}
return ;
}
[HDU 3435]
2016-10-27 11:12:02
【HDU 3435】 A new Graph Game (KM|费用流)的更多相关文章
- HDU 3435 A new Graph Game(最小费用流:有向环权值最小覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=3435 题意:有n个点和m条边,你可以删去任意条边,使得所有点在一个哈密顿路径上,路径的权值得最小. 思路: 费用 ...
- My Brute HDU - 3315(KM || 费用流)
题意: 有S1到Sn这n个勇士要和X1到Xn这n个勇士决斗,初始时,Si的决斗对象是Xi. 如果Si赢了Xi,那么你将获得Vi分,否则你将获得-Vi分. Si和Xi对决时,Si有初始生命Hi,初始攻击 ...
- 【刷题】HDU 3435 A new Graph Game
Problem Description An undirected graph is a graph in which the nodes are connected by undirected ar ...
- HDU 2485 Destroying the bus stations(费用流)
http://acm.hdu.edu.cn/showproblem.php?pid=2485 题意: 现在要从起点1到终点n,途中有多个车站,每经过一个车站为1时间,现在要在k时间内到达终点,问至少要 ...
- HDU 2686 Matrix 3376 Matrix Again(费用流)
HDU 2686 Matrix 题目链接 3376 Matrix Again 题目链接 题意:这两题是一样的,仅仅是数据范围不一样,都是一个矩阵,从左上角走到右下角在从右下角走到左上角能得到最大价值 ...
- HDU 6611 K Subsequence(Dijkstra优化费用流 模板)题解
题意: 有\(n\)个数\(a_1\cdots a_n\),现要你给出\(k\)个不相交的非降子序列,使得和最大. 思路: 费用流建图,每个点拆点,费用为\(-a[i]\),然后和源点连边,和后面非降 ...
- HDU 3435 A new Graph Game(最小费用最大流)&HDU 3488
A new Graph Game Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 3435 A new Graph Game
http://acm.hdu.edu.cn/showproblem.php?pid=3435 #include <cstdio> #include <iostream> #in ...
- hdu 6118度度熊的交易计划(费用流)
度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
随机推荐
- R-大数据分析挖掘(3-R作图)
R语言绘图功能: 提供实例: demo(graphics)
- 爬虫神器XPath,程序员带你免费获取周星驰等明星热门电影
本教程由"做全栈攻城狮"原创首发,本人大学生一枚平时还需要上课,但尽量每日更新文章教程.一方面把我所习得的知识分享出来,希望能对初学者有所帮助.另一方面总结自己所学,以备以后查看. ...
- Asp.Net MVC--Controller激活2
在使用MVC项目中,如果激活控制器,则就会向前台返回action执行的结果. 很多时候,根据需求,手动激活控制器来向客户端返回结果. 一.激活实例代码1 这是在Global文件中使用 var rout ...
- SQLSERVER一些公用DLL的作用解释
如果你的SQLSERVER安装在C盘的话,下面的路径就是相应SQLSERVER版本的公用DLL的存放路径 SQL2005 C:\Program Files\Microsoft SQL Server\9 ...
- SQL 查找存储过程及视图与自带函数
查找所有所有存储过程的名称及信息select * from sysobjectswhere type='P' 查看存储过程定义语句sp_helptext [存储过程名] 查看所有视图及信息select ...
- xcode 最近打开文件列表显示为空或不显示最近打开的项目或(no recent projects)解决办法
如果使用的是10.10 系统,打开系统设置-->进入通用-->在最下面的"最近使用的项目"中将0改为你可以接受的选项 如果不是10.10,那么就从系统偏好设置---&g ...
- com和dll(一)
1.com为一种规范,使不同语言能在二进制层面上进行交互. 2.dll为ms的一种程序打包文件,使程序的代码能分开打包编译,并能在运行时共享.
- The Wonderful Wizard of Oz-绿野仙踪-(音频+文本)-英文版本
Audio: http://www.booksshouldbefree.com/book/the-wonderful-wizard-of-oz Books: http://www.gutenberg. ...
- mysql 5.7安装脚本
[root@HE2 ~]# cat mysql_auto_install.sh ###### 二进制自动安装数据库脚本root密码MANAGER将脚本和安装包放在/root目录即可########## ...
- Libnids---编写网络应用程序的利器
一.前言 Libnids是一个用于网络入侵检测开发的专业编程接口,它使用Libpcap进行数据包的捕获.同时,Libnids提供了TCP/IP数据流重组功能,因此省去了应用层自己考虑数据分片.重传等情 ...
