A new Graph Game

Problem Description
An undirected graph is a graph in which the nodes are connected by undirected arcs. An undirected arc is an edge that has no arrow. Both ends of an undirected arc are equivalent--there is no head or tail. Therefore, we represent an edge in an undirected graph as a set rather than an ordered pair.
Now given an undirected graph, you could delete any number of edges as you wish. Then you will get one or more connected sub graph from the original one (Any of them should have more than one vertex).
You goal is to make all the connected sub graphs exist the Hamiltonian circuit after the delete operation. What’s more, you want to know the minimum sum of all the weight of the edges on the “Hamiltonian circuit” of all the connected sub graphs (Only one “Hamiltonian circuit” will be calculated in one connected sub graph! That is to say if there exist more than one “Hamiltonian circuit” in one connected sub graph, you could only choose the one in which the sum of weight of these edges is minimum).
  For example, we may get two possible sums:

(1)  7 + 10 + 5 = 22
(2)  7 + 10 + 2 = 19
(There are two “Hamiltonian circuit” in this graph!)
Input
In the first line there is an integer T, indicates the number of test cases. (T <= 20)
In each case, the first line contains two integers n and m, indicates the number of vertices and the number of edges. (1 <= n <=1000, 0 <= m <= 10000)
Then m lines, each line contains three integers a,b,c ,indicates that there is one edge between a and b, and the weight of it is c . (1 <= a,b <= n, a is not equal to b in any way, 1 <= c <= 10000)
Output
Output “Case %d: “first where d is the case number counted from one. Then output “NO” if there is no way to get some connected sub graphs that any of them exists the Hamiltonian circuit after the delete operation. Otherwise, output the minimum sum of weight you may get if you delete the edges in the optimal strategy.

Sample Input
3

3 4
1 2 5
2 1 2
2 3 10
3 1 7

3 2
1 2 3
1 2 4

2 2
1 2 3
1 2 4

Sample Output
Case 1: 19
Case 2: NO
Case 3: 6

Hint

In Case 1:
You could delete edge between 1 and 2 whose weight is 5.

In Case 2:
It’s impossible to get some connected sub graphs that any of them exists the Hamiltonian circuit after the delete operation.

 
 
【题意】
  将一个无向图删边得到一些子图,并使每个子图中存在哈密顿回路,并使所有哈密顿回路上边的权值最小
 
【分析】
  形成哈密顿回路的话就是每个点入度出度都为0.拆点建二分图,然后KM。
 
这题要判断能不能完美匹配,这里修改一下模版!!
INF 那里要判断一下再减delta!!
 
代码如下:
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 1010
#define Maxm 10010
#define INF 0xfffffff struct node
{
int x,y,c,next;
}t[Maxm*];int len;
int first[Maxn]; void ins(int x,int y,int c)
{
t[++len].x=x;t[len].y=y;t[len].c=-c;
t[len].next=first[x];first[x]=len;
} int mymin(int x,int y) {return x<y?x:y;}
int mymax(int x,int y) {return x>y?x:y;} int lx[Maxn],ly[Maxn];
int slack[Maxn],match[Maxn];
bool visx[Maxn],visy[Maxn];
int n; bool ffind(int x)
{
visx[x]=;
for(int i=first[x];i;i=t[i].next) if(!visy[t[i].y])
{
int y=t[i].y;
if(t[i].c==lx[x]+ly[y])
{
visy[y]=;
if(!match[y]||ffind(match[y]))
{
match[y]=x;
return ;
}
}
else slack[y]=mymin(slack[y],lx[x]+ly[y]-t[i].c);
}
return ; } bool solve()
{
memset(match,,sizeof(match));
memset(ly,,sizeof(ly));
for(int i=;i<=n;i++)
{
lx[i]=-INF;
// printf("%d\n",i);
for(int j=first[i];j;j=t[j].next)
{
// printf("%d\n",j);
lx[i]=mymax(lx[i],t[j].c); }
}
int i;
for(i=;i<=n;i++)
{
for(int j=;j<=n;j++) slack[j]=INF;
while()
{
memset(visx,,sizeof(visx));
memset(visy,,sizeof(visy));
if(ffind(i)) break;
int delta=INF;
for(int j=;j<=n;j++) if(!visy[j])
delta=mymin(delta,slack[j]);
if(delta==INF) return ;
for(int j=;j<=n;j++)
{
if(visx[j]) lx[j]-=delta;
if(visy[j]) ly[j]+=delta;
else if(slack[j]!=INF) slack[j]-=delta;
}
}
}
return ;
} int main()
{
int T,kase=;
scanf("%d",&T);
while(T--)
{
int m;
scanf("%d%d",&n,&m);
len=;
memset(first,,sizeof(first));
for(int i=;i<=m;i++)
{
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
ins(x,y,c);ins(y,x,c);
}
printf("Case %d: ",++kase);
if(solve())
{
int ans=;
for(int i=;i<=n;i++) ans+=lx[i]+ly[i];
printf("%d\n",-ans);
}
else printf("NO\n");
}
return ;
}

[HDU 3435]

2016-10-27 11:12:02

【HDU 3435】 A new Graph Game (KM|费用流)的更多相关文章

  1. HDU 3435 A new Graph Game(最小费用流:有向环权值最小覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=3435 题意:有n个点和m条边,你可以删去任意条边,使得所有点在一个哈密顿路径上,路径的权值得最小. 思路: 费用 ...

  2. My Brute HDU - 3315(KM || 费用流)

    题意: 有S1到Sn这n个勇士要和X1到Xn这n个勇士决斗,初始时,Si的决斗对象是Xi. 如果Si赢了Xi,那么你将获得Vi分,否则你将获得-Vi分. Si和Xi对决时,Si有初始生命Hi,初始攻击 ...

  3. 【刷题】HDU 3435 A new Graph Game

    Problem Description An undirected graph is a graph in which the nodes are connected by undirected ar ...

  4. HDU 2485 Destroying the bus stations(费用流)

    http://acm.hdu.edu.cn/showproblem.php?pid=2485 题意: 现在要从起点1到终点n,途中有多个车站,每经过一个车站为1时间,现在要在k时间内到达终点,问至少要 ...

  5. HDU 2686 Matrix 3376 Matrix Again(费用流)

    HDU 2686 Matrix 题目链接 3376 Matrix Again 题目链接 题意:这两题是一样的,仅仅是数据范围不一样,都是一个矩阵,从左上角走到右下角在从右下角走到左上角能得到最大价值 ...

  6. HDU 6611 K Subsequence(Dijkstra优化费用流 模板)题解

    题意: 有\(n\)个数\(a_1\cdots a_n\),现要你给出\(k\)个不相交的非降子序列,使得和最大. 思路: 费用流建图,每个点拆点,费用为\(-a[i]\),然后和源点连边,和后面非降 ...

  7. HDU 3435 A new Graph Game(最小费用最大流)&amp;HDU 3488

    A new Graph Game Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. hdu 3435 A new Graph Game

    http://acm.hdu.edu.cn/showproblem.php?pid=3435 #include <cstdio> #include <iostream> #in ...

  9. hdu 6118度度熊的交易计划(费用流)

    度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

随机推荐

  1. Repositories.EntityFramework 实现方式

    今天记录一下自己的EntityFramework数据访问层.这里用通过泛型Repository的方式实现了数据的访问.先上一张结构图. Configuration文件夹里面的类是全部实体映射类.这些类 ...

  2. MVC小系列(一)【制作表格】

    在Razor引擎中,对于在表格中进行遍历时,一般会这样写 复制代码 <table border="> @{ ; i < ; i++) { <tr> <td ...

  3. 利用Merge生成或更新新记录

    -- ============================================= -- Author: <华仔> -- Create date: <2016,6,7& ...

  4. ios-异步消息同步问题-典型使用场景: 微信私信界面

    前言 在ios开发中常常会有聊天功能,一般简单聊天功能只传输文字,但是稍微复杂点儿会有图片发送功能了.最全而且可支持扩展的例如微信,qq 聊天功能了.传输方式各有千秋,如get,post,websoc ...

  5. linux关闭声音

    对于CentOS/Redhat/RHEL/Fedora系统,使用root身份执行:echo "alias pcspkr off" >> /etc/modprobe.co ...

  6. APP评价(星星点赞)很简单

    1.用代码或者storyboard创建5个button(现在一般都是5个星星) 我用的是storyboard 记得一定要设置button的tag值 在.h中 @property (weak, nona ...

  7. react native android 开发,基础配置笔记。

    一.React-native-device-info https://github.com/rebeccahughes/react-native-device-info 二.修改App名称 三.定位权 ...

  8. C#微信开发之旅--基本信息的回复

    上一篇说到配置和验证<C#微信开发之旅--准备阶段> 下面来实现一下简单的信息回复. 也就是接收XML,返回XML 可以去看下微信开发文档的说明:http://mp.weixin.qq.c ...

  9. JavaScript学习笔记 -- ES6学习(三) 变量的解构赋值

    1.解构赋值的定义 在ES6中,允许按照一定模式,从数组和对象中提取值(所谓解构),然后对变量进行赋值. var a = 1; var b = 2; var c = 3; //等价于 var [a, ...

  10. H5之canvas简单入门

    <canvas></canvas>是html5出现的新标签,像所有的dom对象一样它有自己本身的属性.方法和事件,其中就有绘图的方法,js能够调用它来进行绘图 <canv ...