基于opencv的小波变换
基于opencv的小波变换
提供函数DWT()和IDWT(),前者完成任意层次的小波变换,后者完成任意层次的小波逆变换。输入图像要求必须是单通道浮点图像,对图像大小也有要求(1层变换:w,h必须是2的倍数;2层变换:w,h必须是4的倍数;3层变换:w,h必须是8的倍数......),变换后的结果直接保存在输入图像中。
1、函数参数简单,图像指针pImage和变换层数nLayer。
2、一个函数直接完成多层次二维小波变换,尽量减少下标运算,避免不必要的函数调用,以提高执行效率。
3、变换过程中,使用了一个指针数组pData用于保存每行数据的起始位置,pRow和pColumn用于保存一行和一列临时数据,用于奇偶分离或合并,内存消耗较少。
- 代码:全选
// 二维离散小波变换(单通道浮点图像)
void DWT(IplImage *pImage, int nLayer)
{
// 执行条件
if (pImage)
{
if (pImage->nChannels == 1 &&
pImage->depth == IPL_DEPTH_32F &&
((pImage->width >> nLayer) << nLayer) == pImage->width &&
((pImage->height >> nLayer) << nLayer) == pImage->height)
{
int i, x, y, n;
float fValue = 0;
float fRadius = sqrt(2.0f);
int nWidth = pImage->width;
int nHeight = pImage->height;
int nHalfW = nWidth / 2;
int nHalfH = nHeight / 2;
float **pData = new float*[pImage->height];
float *pRow = new float[pImage->width];
float *pColumn = new float[pImage->height];
for (i = 0; i < pImage->height; i++)
{
pData[i] = (float*) (pImage->imageData + pImage->widthStep * i);
}
// 多层小波变换
for (n = 0; n < nLayer; n++, nWidth /= 2, nHeight /= 2, nHalfW /= 2, nHalfH /= 2)
{
// 水平变换
for (y = 0; y < nHeight; y++)
{
// 奇偶分离
memcpy(pRow, pData[y], sizeof(float) * nWidth);
for (i = 0; i < nHalfW; i++)
{
x = i * 2;
pData[y][i] = pRow[x];
pData[y][nHalfW + i] = pRow[x + 1];
}
// 提升小波变换
for (i = 0; i < nHalfW - 1; i++)
{
fValue = (pData[y][i] + pData[y][i + 1]) / 2;
pData[y][nHalfW + i] -= fValue;
}
fValue = (pData[y][nHalfW - 1] + pData[y][nHalfW - 2]) / 2;
pData[y][nWidth - 1] -= fValue;
fValue = (pData[y][nHalfW] + pData[y][nHalfW + 1]) / 4;
pData[y][0] += fValue;
for (i = 1; i < nHalfW; i++)
{
fValue = (pData[y][nHalfW + i] + pData[y][nHalfW + i - 1]) / 4;
pData[y][i] += fValue;
}
// 频带系数
for (i = 0; i < nHalfW; i++)
{
pData[y][i] *= fRadius;
pData[y][nHalfW + i] /= fRadius;
}
}
// 垂直变换
for (x = 0; x < nWidth; x++)
{
// 奇偶分离
for (i = 0; i < nHalfH; i++)
{
y = i * 2;
pColumn[i] = pData[y][x];
pColumn[nHalfH + i] = pData[y + 1][x];
}
for (i = 0; i < nHeight; i++)
{
pData[i][x] = pColumn[i];
}
// 提升小波变换
for (i = 0; i < nHalfH - 1; i++)
{
fValue = (pData[i][x] + pData[i + 1][x]) / 2;
pData[nHalfH + i][x] -= fValue;
}
fValue = (pData[nHalfH - 1][x] + pData[nHalfH - 2][x]) / 2;
pData[nHeight - 1][x] -= fValue;
fValue = (pData[nHalfH][x] + pData[nHalfH + 1][x]) / 4;
pData[0][x] += fValue;
for (i = 1; i < nHalfH; i++)
{
fValue = (pData[nHalfH + i][x] + pData[nHalfH + i - 1][x]) / 4;
pData[i][x] += fValue;
}
// 频带系数
for (i = 0; i < nHalfH; i++)
{
pData[i][x] *= fRadius;
pData[nHalfH + i][x] /= fRadius;
}
}
}
delete[] pData;
delete[] pRow;
delete[] pColumn;
}
}
}// 二维离散小波恢复(单通道浮点图像)
void IDWT(IplImage *pImage, int nLayer)
{
// 执行条件
if (pImage)
{
if (pImage->nChannels == 1 &&
pImage->depth == IPL_DEPTH_32F &&
((pImage->width >> nLayer) << nLayer) == pImage->width &&
((pImage->height >> nLayer) << nLayer) == pImage->height)
{
int i, x, y, n;
float fValue = 0;
float fRadius = sqrt(2.0f);
int nWidth = pImage->width >> (nLayer - 1);
int nHeight = pImage->height >> (nLayer - 1);
int nHalfW = nWidth / 2;
int nHalfH = nHeight / 2;
float **pData = new float*[pImage->height];
float *pRow = new float[pImage->width];
float *pColumn = new float[pImage->height];
for (i = 0; i < pImage->height; i++)
{
pData[i] = (float*) (pImage->imageData + pImage->widthStep * i);
}
// 多层小波恢复
for (n = 0; n < nLayer; n++, nWidth *= 2, nHeight *= 2, nHalfW *= 2, nHalfH *= 2)
{
// 垂直恢复
for (x = 0; x < nWidth; x++)
{
// 频带系数
for (i = 0; i < nHalfH; i++)
{
pData[i][x] /= fRadius;
pData[nHalfH + i][x] *= fRadius;
}
// 提升小波恢复
fValue = (pData[nHalfH][x] + pData[nHalfH + 1][x]) / 4;
pData[0][x] -= fValue;
for (i = 1; i < nHalfH; i++)
{
fValue = (pData[nHalfH + i][x] + pData[nHalfH + i - 1][x]) / 4;
pData[i][x] -= fValue;
}
for (i = 0; i < nHalfH - 1; i++)
{
fValue = (pData[i][x] + pData[i + 1][x]) / 2;
pData[nHalfH + i][x] += fValue;
}
fValue = (pData[nHalfH - 1][x] + pData[nHalfH - 2][x]) / 2;
pData[nHeight - 1][x] += fValue;
// 奇偶合并
for (i = 0; i < nHalfH; i++)
{
y = i * 2;
pColumn[y] = pData[i][x];
pColumn[y + 1] = pData[nHalfH + i][x];
}
for (i = 0; i < nHeight; i++)
{
pData[i][x] = pColumn[i];
}
}
// 水平恢复
for (y = 0; y < nHeight; y++)
{
// 频带系数
for (i = 0; i < nHalfW; i++)
{
pData[y][i] /= fRadius;
pData[y][nHalfW + i] *= fRadius;
}
// 提升小波恢复
fValue = (pData[y][nHalfW] + pData[y][nHalfW + 1]) / 4;
pData[y][0] -= fValue;
for (i = 1; i < nHalfW; i++)
{
fValue = (pData[y][nHalfW + i] + pData[y][nHalfW + i - 1]) / 4;
pData[y][i] -= fValue;
}
for (i = 0; i < nHalfW - 1; i++)
{
fValue = (pData[y][i] + pData[y][i + 1]) / 2;
pData[y][nHalfW + i] += fValue;
}
fValue = (pData[y][nHalfW - 1] + pData[y][nHalfW - 2]) / 2;
pData[y][nWidth - 1] += fValue;
// 奇偶合并
for (i = 0; i < nHalfW; i++)
{
x = i * 2;
pRow[x] = pData[y][i];
pRow[x + 1] = pData[y][nHalfW + i];
}
memcpy(pData[y], pRow, sizeof(float) * nWidth);
}
}
delete[] pData;
delete[] pRow;
delete[] pColumn;
}
}
}
上述代码只能对单通道进行变换,并且对图像位深和大小也有要求,还是不太好用。没关系,就这两个函数,可以对任意大小的彩色图像进行任意层次的小波变换,给段代码:
- 代码:全选
// 小波变换层数
int nLayer = 2;
// 输入彩色图像
IplImage *pSrc = cvLoadImage("Lena.jpg", CV_LOAD_IMAGE_COLOR);
// 计算小波图象大小
CvSize size = cvGetSize(pSrc);
if ((pSrc->width >> nLayer) << nLayer != pSrc->width)
{
size.width = ((pSrc->width >> nLayer) + 1) << nLayer;
}
if ((pSrc->height >> nLayer) << nLayer != pSrc->height)
{
size.height = ((pSrc->height >> nLayer) + 1) << nLayer;
}
// 创建小波图象
IplImage *pWavelet = cvCreateImage(size, IPL_DEPTH_32F, pSrc->nChannels);
if (pWavelet)
{
// 小波图象赋值
cvSetImageROI(pWavelet, cvRect(0, 0, pSrc->width, pSrc->height));
cvConvertScale(pSrc, pWavelet, 1, -128);
cvResetImageROI(pWavelet);
// 彩色图像小波变换
IplImage *pImage = cvCreateImage(cvGetSize(pWavelet), IPL_DEPTH_32F, 1);
if (pImage)
{
for (int i = 1; i <= pWavelet->nChannels; i++)
{
cvSetImageCOI(pWavelet, i);
cvCopy(pWavelet, pImage, NULL);
// 二维离散小波变换
DWT(pImage, nLayer);
// 二维离散小波恢复
// IDWT(pImage, nLayer);
cvCopy(pImage, pWavelet, NULL);
}
cvSetImageCOI(pWavelet, 0);
cvReleaseImage(&pImage);
}
// 小波变换图象
cvSetImageROI(pWavelet, cvRect(0, 0, pSrc->width, pSrc->height));
cvConvertScale(pWavelet, pSrc, 1, 128);
cvResetImageROI(pWavelet); // 本行代码有点多余,但有利用养成良好的编程习惯
cvReleaseImage(&pWavelet);
}
// 显示图像pSrc
// ...
cvReleaseImage(&pSrc);
基于opencv的小波变换的更多相关文章
- 基于opencv的小波变换代码和图像结果
#include "stdafx.h" #include "WaveTransform.h" #include <math.h> #include ...
- [转载]卡尔曼滤波器及其基于opencv的实现
卡尔曼滤波器及其基于opencv的实现 源地址:http://hi.baidu.com/superkiki1989/item/029f65013a128cd91ff0461b 这个是维基百科中的链接, ...
- 基于Opencv和Mfc的图像处理增强库GOCVHelper(索引)
GOCVHelper(GreenOpen Computer Version Helper )是我在这几年编写图像处理程序的过程中积累下来的函数库.主要是对Opencv的适当扩展和在实现Mfc程序时候的 ...
- 基于OpenCv的人脸检测、识别系统学习制作笔记之一
基于OpenCv从视频文件到摄像头的人脸检测 在OpenCv中读取视频文件和读取摄像头的的视频流然后在放在一个窗口中显示结果其实是类似的一个实现过程. 先创建一个指向CvCapture结构的指针 Cv ...
- 基于opencv网络摄像头在ubuntu下的视频获取
基于opencv网络摄像头在ubuntu下的视频获取 1 工具 原料 平台 :UBUNTU12.04 安装库 Opencv-2.3 2 安装编译运行步骤 安装编译opencv-2.3 参 ...
- 基于opencv在摄像头ubuntu根据视频获取
基于opencv在摄像头ubuntu根据视频获取 1 工具 原料 平台 :UBUNTU12.04 安装库 Opencv-2.3 2 安装编译执行步骤 安装编译opencv-2.3 參考h ...
- OpenCV2学习笔记(十四):基于OpenCV卡通图片处理
得知OpenCV有一段时间.除了研究的各种算法的内容.除了从备用,据导游书籍和资料,尝试结合链接的图像处理算法和日常生活,第一桌面上(随着摄像头)完成了一系列的视频流处理功能.开发平台Qt5.3.2+ ...
- Android上掌纹识别第一步:基于OpenCV的6种肤色分割 源码和效果图
Android上掌纹识别第一步:基于OpenCV的6种肤色分割 源码和效果图 分类: OpenCV图像处理2013-02-21 21:35 6459人阅读 评论(8) 收藏 举报 原文链接 ht ...
- 每日一练之自适应中值滤波器(基于OpenCV实现)
本文主要介绍了自适应的中值滤波器,并基于OpenCV实现了该滤波器,并且将自适应的中值滤波器和常规的中值滤波器对不同概率的椒盐噪声的过滤效果进行了对比.最后,对中值滤波器的优缺点了进行了总结. 空间滤 ...
随机推荐
- mysql优化概析
优化从几个方面来说: 表结构设计 适当索引(主键 普通 唯一 全文组合) mysql本身配置 硬件配置 SQL语句优化 存储过程 分表 分区 读写分离 清理垃圾数据
- POJ3974 Palindrome
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- sqlserver2008中如何用右键可视化的设置外键
右键->设计 然后打表设计界面打开了然后右键点你要设置与其它表关联的列然后点关系,选择外键表与列然后点保存,就这样
- wap上传图片跨域发送post请求
wap和接口交互是跨域请求,一般只能通过Jsonp来进行数据的吞吐,然而jsonp只是GET请求,不能发送post请求,所以会对项目需求有所限制. 需求:wap跨域通过接口上传图片. 条件:接口是C# ...
- Android XML解析
解析XML有三种方式:Dom.SAX.Pull 其中pull解析器运行方式与SAX类似. 我们首先认识pull解析器:http://developer.android.com/intl/zh-cn/r ...
- webapp构建工具库
Meteor:JavaScript App Platform braintree:在线支付 jquery datetimepicker:日期控件 Hotjar Tracking Code:网站追踪 Z ...
- 有理数类 Java BigInteger实现
import java.math.BigInteger; public class Rational extends Number implements Comparable { private Bi ...
- Java I/O重定向
1.输入重定向 命令行:java [java类文件] < [输入文件路径名] 代码:InputStream inputStream = new FileInputStream( ...
- (二)Android 基本控件
第一节:View 视图组件 Andorid 中的View 视图组件,实现类是android.view.View 类,是绝大多数图形显示类的父类,提供了大量的方法和属性.在View 类下,有很多子类,如 ...
- 获取通讯录的信息(关于iOS9.0之后新的框架-ContactFramework)
转载自:http://my.oschina.net/u/2340880/blog/511995?p={{totalPage}} 一.引言 在以前iOS开发中,涉及联系人相关的编程,代码都非常繁琐,并且 ...