The following are top 10 algorithms related concepts in coding interview. I will try to illustrate those concepts though some simple examples. As understanding those concepts requires much more efforts, this list only serves as an introduction. They are viewed from a Java perspective. The following concepts will be covered:

  1. String
  2. Linked List
  3. Tree
  4. Graph
  5. Sorting
  6. Recursion vs. Iteration
  7. Dynamic Programming
  8. Bit Manipulation
  9. Probability
  10. Combinations and Permutations

1. String

Without code auto-completion of any IDE, the following methods should be remembered.

toCharyArray() //get char array of a String
Arrays.sort() //sort an array
Arrays.toString(char[] a) //convert to string
charAt(int x) //get a char at the specific index
length() //string length
length //array size

Also in Java a String is not a char array. A String contains a char array and other fields and methods.

2. Linked List

The implementation of a linked list is pretty simple in Java. Each node has a value and a link to next node.

class Node {
int val;
Node next;
 
Node(int x) {
val = x;
next = null;
}
}

Two popular applications of linked list are stack and queue.

Stack

class Stack{
Node top;
 
public Node peek(){
if(top != null){
return top;
}
 
return null;
}
 
public Node pop(){
if(top == null){
return null;
}else{
Node temp = new Node(top.val);
top = top.next;
return temp;
}
}
 
public void push(Node n){
if(n != null){
n.next = top;
top = n;
}
}
}

Queue

class Queue{
Node first, last;
 
public void enqueue(Node n){
if(first == null){
first = n;
last = first;
}else{
last.next = n;
last = n;
}
}
 
public Node dequeue(){
if(first == null){
return null;
}else{
Node temp = new Node(first.val);
first = first.next;
return temp;
}
}
}

3. Tree

Tree here is normally binary tree. Each node contains a left node and right node like the following:

class TreeNode{
int value;
TreeNode left;
TreeNode right;
}

Here are some concepts related with trees:

  1. Binary Search Tree: for all nodes, left children <= current node <= right children
  2. Balanced vs. Unbalanced: In a balanced tree, the depth of the left and right subtrees of every node differ by 1 or less.
  3. Full Binary Tree: every node other than the leaves has two children.
  4. Perfect Binary Tree: a full binary tree in which all leaves are at the same depth or same level, and in which every parent has two children.
  5. Complete Binary Tree: a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible

4. Graph

Graph related questions mainly focus on depth first search and breath first search.

Below is a simple implementation of a graph and breath first search.

1) Define a GraphNode

class GraphNode{
int val;
GraphNode next;
GraphNode[] neighbors;
boolean visited;
 
GraphNode(int x) {
val = x;
}
 
GraphNode(int x, GraphNode[] n){
val = x;
neighbors = n;
}
 
public String toString(){
return "value: "+ this.val;
}
}

2) Define a Queue

class Queue{
GraphNode first, last;
 
public void enqueue(GraphNode n){
if(first == null){
first = n;
last = first;
}else{
last.next = n;
last = n;
}
}
 
public GraphNode dequeue(){
if(first == null){
return null;
}else{
GraphNode temp = new GraphNode(first.val, first.neighbors);
first = first.next;
return temp;
}
}
}

3) Breath First Search uses a Queue

public class GraphTest {
 
public static void main(String[] args) {
GraphNode n1 = new GraphNode(1);
GraphNode n2 = new GraphNode(2);
GraphNode n3 = new GraphNode(3);
GraphNode n4 = new GraphNode(4);
GraphNode n5 = new GraphNode(5);
 
n1.neighbors = new GraphNode[]{n2,n3,n5};
n2.neighbors = new GraphNode[]{n1,n4};
n3.neighbors = new GraphNode[]{n1,n4,n5};
n4.neighbors = new GraphNode[]{n2,n3,n5};
n5.neighbors = new GraphNode[]{n1,n3,n4};
 
breathFirstSearch(n1, 5);
}
 
public static void breathFirstSearch(GraphNode root, int x){
if(root.val == x)
System.out.println("find in root");
 
Queue queue = new Queue();
root.visited = true;
queue.enqueue(root);
 
while(queue.first != null){
GraphNode c = (GraphNode) queue.dequeue();
for(GraphNode n: c.neighbors){
 
if(!n.visited){
System.out.print(n + " ");
n.visited = true;
if(n.val == x)
System.out.println("Find "+n);
queue.enqueue(n);
}
}
}
}
}

Output:

value: 2 value: 3 value: 5 Find value: 5
value: 4

5. Sorting

Time complexity of different sorting algorithms. You can go to wiki to see basic idea of them.

Algorithm Average Time Worst Time Space
Bubble sort n^2 n^2 1
Selection sort n^2 n^2 1
Counting Sort n+k n+k n+k
Insertion sort n^2 n^2  
Quick sort n log(n) n^2  
Merge sort n log(n) n log(n) depends

In addition, here are some implementations/demos: Counting sortMergesortQuicksortInsertionSort.

6. Recursion vs. Iteration

Recursion should be a built-in thought for programmers. It can be demonstrated by a simple example.

Question: there are n stairs, each time one can climb 1 or 2. How many different ways to climb the stairs.

Step 1: Finding the relationship before n and n-1.

To get n, there are only two ways, one 1-stair from n-1 or 2-stairs from n-2. If f(n) is the number of ways to climb to n, then f(n) = f(n-1) + f(n-2)

Step 2: Make sure the start condition is correct.

f(0) = 0;
f(1) = 1;

public static int f(int n){
if(n <= 2) return n;
int x = f(n-1) + f(n-2);
return x;
}

The time complexity of the recursive method is exponential to n. There are a lot of redundant computations.

f(5)
f(4) + f(3)
f(3) + f(2) + f(2) + f(1)
f(2) + f(1) + f(1) + f(0) + f(1) + f(0) + f(1)
f(1) + f(0) + f(1) + f(1) + f(0) + f(1) + f(0) + f(1)

It should be straightforward to convert the recursion to iteration.

public static int f(int n) {
 
if (n <= 2){
return n;
}
 
int first = 1, second = 2;
int third = 0;
 
for (int i = 3; i <= n; i++) {
third = first + second;
first = second;
second = third;
}
 
return third;
}

For this example, iteration takes less time. You may also want to check out Recursion vs Iteration.

7. Dynamic Programming

Dynamic programming is a technique for solving problems with the following properties:

  1. An instance is solved using the solutions for smaller instances.
  2. The solution for a smaller instance might be needed multiple times.
  3. The solutions to smaller instances are stored in a table, so that each smaller instance is solved only once.
  4. Additional space is used to save time.

The problem of climbing steps perfectly fit those 4 properties. Therefore, it can be solve by using dynamic programming.

public static int[] A = new int[100];
 
public static int f3(int n) {
if (n <= 2)
A[n]= n;
 
if(A[n] > 0)
return A[n];
else
A[n] = f3(n-1) + f3(n-2);//store results so only calculate once!
return A[n];
}

8. Bit Manipulation

Bit operators:

OR (|) AND (&) XOR (^) Left Shift (<<) Right Shift (>>) Not (~)
1|0=1 1&0=0 1^0=1 0010<<2=1000 1100>>2=0011 ~1=0

Get bit i for a give number n. (i count from 0 and starts from right)

public static boolean getBit(int num, int i){
int result = num & (1<<i);
 
if(result == 0){
return false;
}else{
return true;
}
}

For example, get second bit of number 10.

i=1, n=10
1<<1= 10
1010&10=10
10 is not 0, so return true;

9. Probability

Solving probability related questions normally requires formatting the problem well. Here is just a simple example of such kind of problems.

There are 50 people in a room, what’s the probability that two people have the same birthday? (Ignoring the fact of leap year, i.e., 365 day every year)

Very often calculating probability of something can be converted to calculate the opposite. In this example, we can calculate the probability that all people have unique birthdays. That is: 365/365 + 364/365 + 363/365 + 365-n/365 + 365-49/365. And the probability that at least two people have the same birthday would be 1 – this value.

public static double caculateProbability(int n){
double x = 1;
 
for(int i=0; i<n; i++){
x *= (365.0-i)/365.0;
}
 
double pro = Math.round((1-x) * 100);
return pro/100;
}

calculateProbability(50) = 0.97

10. Combinations and Permutations

The difference between combination and permutation is whether order matters.

Please leave your comment if you think any other problem should be here.

References/Recommmended Materials:
1. Binary tree
2. Introduction to Dynamic Programming
3. UTSA Dynamic Programming slides
4. Birthday paradox
5. Cracking the Coding Interview: 150 Programming InterviewQuestions and Solutions, Gayle Laakmann McDowell

Related posts:

Category: Algorithms,Interview

转:Top 10 Algorithms for Coding Interview的更多相关文章

  1. Top 10 Algorithms for Coding Interview--reference

    By X Wang Update History:Web Version latest update: 4/6/2014PDF Version latest update: 1/16/2014 The ...

  2. Top 10 Algorithms of 20th and 21st Century

    Top 10 Algorithms of 20th and 21st Century MATH 595 (Section TTA) Fall 2014 TR 2:00 pm - 3:20 pm, Ro ...

  3. 18 Candidates for the Top 10 Algorithms in Data Mining

    Classification============== #1. C4.5 Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.Morga ...

  4. Cracking the Coding Interview(Stacks and Queues)

    Cracking the Coding Interview(Stacks and Queues) 1.Describe how you could use a single array to impl ...

  5. crack the coding interview

    crack the coding interview answer c++ 1.1 #ifndef __Question_1_1_h__  #define __Question_1_1_h__  #i ...

  6. TOP 10 ONLINE COMPILER

    Top 10 Online Compilers +1338 Tweet Share106 Share Pin 444 Shares Online compilers are one type of t ...

  7. Favorites of top 10 rules for success

    Dec. 31, 2015 Stayed up to last minute of 2015, 12:00am, watching a few of videos about top 10 rules ...

  8. Top 10 Programming Fonts

    Top 10 Programming Fonts Sunday, 17 May 2009 • Permalink Update: This post was written back in 2009, ...

  9. Cracking the Coding Interview(Trees and Graphs)

    Cracking the Coding Interview(Trees and Graphs) 树和图的训练平时相对很少,还是要加强训练一些树和图的基础算法.自己对树节点的设计应该不是很合理,多多少少 ...

随机推荐

  1. java 从零开始,学习笔记之基础入门<Oracle_基础>(三十三)

    Oracle 数据库基本知识   [训练1] 显示DEPT表的指定字段的查询.               输入并执行查询:               SELECTdeptno,dname FROM ...

  2. [置顶] cocos2d-x 植物大战僵尸(4) 帽子僵尸的产生

         大家早上好,趁着阳光美好的时候,我打算写下博客:今天要说的是僵尸的产生了,这块和太阳因子的产生比较相似,大体上的区别在于僵尸的基类这块:我在考虑是详细的写还是大体的写,本着对自己作业的态度和 ...

  3. cgdb调试postgresql

    之前一直用gdb调试代码,最近在搞pg的时候用了一个cgdb,体验很好,调试pg代码的时候真的很方便. 本文主要讲解在进行pg内核开发的时候,如何搭建一个环境,用cgdb方便快捷的调试postgres ...

  4. WCF:如何将net.tcp协议寄宿到IIS

    1 部署IIS 1.1 安装WAS IIS原本是不支持非HTTP协议的服务,为了让IIS支持net.tcp,必须先安装WAS(Windows Process Activation Service),即 ...

  5. Eclipse Python配置

    Macbook上面安装pydev后,发现新建project后并没有PyDev的选项.在官网上搜索后发现是JDK版本太久.上Oracle官网下载了最新JDK(url: http://www.oracle ...

  6. Qt 学习之路:视图选择 (QItemSelectionModel)

    选择是视图中常用的一个操作.在列表.树或者表格中,通过鼠标点击可以选中某一项,被选中项会变成高亮或者反色.在 Qt 中,选择也是使用了一种模型.在 model/view 架构中,这种选择模型提供了一种 ...

  7. 数据的存储-NSKeyedArchiver和write to file介绍

    数据的存储-NSKeyedArchiver和write to file介绍 首先介绍各个文件的作用-->讲解文件位置的查找方法-->介绍数据存储的方式:1.使用归档方式存储数据 2.wri ...

  8. UIView不能使用UITableView的Static表格的解决方法

    在UIView中嵌入一个Container,用Container来包含UITableViewController即可,到storyboard上显示如下:

  9. linux之CentOS-7.0环境搭建

    此文作为新手安装centos-7的图文教程.  一.  前言 最近,师兄要进行实验室架构搭建,需要学习docker.而docker是完全依赖于linux系统的.所以,有了这篇文章. linux有很多发 ...

  10. msp

    10月8号加入了微软的msp项目,其实那时候对msp没有什么概念,不知道要干嘛,真的觉得大不了就退出呗,反正也没啥大事,   现在再也不那么看了,这二十多天虽然没怎么水群,但是还是一直在关注着我们这个 ...