Wormholes 最短路判断有无负权值
Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2..M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2..M+W+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Sample Input
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
Sample Output
NO
YES
Hint
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
#include<stdio.h>
#include<string.h>
#include<stdlib.h> const int EM = ;
const int VM = ;
const int INF = ;
struct node
{
int u,v,w;
}map[EM]; int cnt,dis[VM];
int n,m,k; void addedge(int au,int av,int aw)
{
map[cnt].u = au;
map[cnt].v = av;
map[cnt].w = aw;
cnt++;
} int Bellman_ford()
{
int flag ,i;
//初始化
for( i = ; i <= n; i++)
{
dis[i] = INF;
}
dis[] =; for( i = ; i <= n; i++)
{
flag = ;
for(int j = ; j < cnt; j++)
{
if(dis[map[j].v] > dis[map[j].u]+map[j].w)
{
dis[map[j].v] = dis[map[j].u]+map[j].w;
flag = ;
}
}
if(flag== ) break;
}
if(i == n+) return ;//若第n次还可以松弛说明存在负环
else return ;
} int main()
{
int t,u,v,w,ans;
scanf("%d",&t);
while(t--)
{
cnt = ;
scanf("%d %d %d",&n,&m,&k);
while(m--)
{
scanf("%d %d %d",&u,&v,&w);
//添加双向边
addedge(u,v,w);
addedge(v,u,w);
}
while(k--)
{
scanf("%d %d %d",&u,&v,&w);
//添加单向边
addedge(u,v,-w);
}
ans = Bellman_ford();
if(ans == )
printf("YES\n");
else printf("NO\n");
}
return ;
}
//spfa判断有无负环
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<iostream>
#include<queue>
using namespace std; const int MAX = ;
const int INF = ;
int n,m,w;
int map[MAX][MAX];
queue<int>que;
int inque[MAX];
int vexcnt[MAX];
int dis[MAX]; bool spfa()
{
memset(inque,,sizeof(inque));
memset(vexcnt,,sizeof(vexcnt));
for(int i = ; i <= n; i++)
dis[i] = INF;
dis[] = ;
que.push();
inque[] = ;
vexcnt[]++;
while(!que.empty())
{
int tmp = que.front();
que.pop();
inque[tmp] = ;
for(int i = ; i <= n; i++)
{
if(dis[tmp] < INF && dis[i] > dis[tmp] + map[tmp][i])
{
dis[i] = dis[tmp] + map[tmp][i];
if(inque[i] == )
{
inque[i] = ;
vexcnt[i]++;
que.push(i);
if(vexcnt[i] >= n)
{
return false;
}
}
}
}
}
return true;
}
int main()
{
int t;
int x,y,z;
scanf("%d",&t);
while(t--)
{
while(!que.empty())que.pop();
scanf("%d %d %d",&n,&m,&w);
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
{
if(i == j) map[i][j] = ;
else map[i][j] = INF;
}
for(int i = ; i <= m; i++)
{
scanf("%d %d %d",&x,&y,&z);
if(map[x][y] > z)
{
map[x][y] = z;
map[y][x] = z;
}
}
for(int i = ; i <= w; i++)
{
scanf("%d %d %d",&x,&y,&z);
if(map[x][y] > -z)
map[x][y] = -z;
}
if(spfa())
printf("NO\n");
else printf("YES\n");
}
return ;
}
<Bellman-Ford算法>
Wormholes 最短路判断有无负权值的更多相关文章
- poj 3259 bellman最短路推断有无负权回路
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 36717 Accepted: 13438 Descr ...
- poj 3259 Wormholes 判断负权值回路
Wormholes Time Limit: 2000 MS Memory Limit: 65536 KB 64-bit integer IO format: %I64d , %I64u Java ...
- 非负权值有向图上的单源最短路径算法之Dijkstra算法
问题的提法是:给定一个没有负权值的有向图和其中一个点src作为源点(source),求从点src到其余个点的最短路径及路径长度.求解该问题的算法一般为Dijkstra算法. 假设图顶点个数为n,则针对 ...
- Expm 10_1 带负权值边的有向图中的最短路径问题
[问题描述] 对于一个带负权值边的有向图,实现Bellman-Ford算法,求出从指定顶点s到其余顶点的最短路径,并判断图中是否存在负环. package org.xiu68.exp.exp10; p ...
- POJ-3259 Wormholes---SPFA判断有无负环
题目链接: https://vjudge.net/problem/POJ-3259 题目大意: 农夫约翰在探索他的许多农场,发现了一些惊人的虫洞.虫洞是很奇特的,因为它是一个单向通道,可让你进入虫洞的 ...
- poj3259,简单判断有无负环,spfa
英语能力差!百度的题意才读懂!就是一个判断有无负环的题.SPFA即可.,注意重边情况!! #include<iostream> //判断有无负环,spfa #include<queu ...
- poj-3259 Wormholes(无向、负权、最短路之负环判断)
http://poj.org/problem?id=3259 Description While exploring his many farms, Farmer John has discovere ...
- 图之单源Dijkstra算法、带负权值最短路径算法
1.图类基本组成 存储在邻接表中的基本项 /** * Represents an edge in the graph * */ class Edge implements Comparable< ...
- hdu 6201 transaction (最短路变形——带负权最长路)
题意: 给定n个城市的货物买卖价格, 然后给定n-1条道路,每条路有不同的路费, 求出从某两个城市买卖一次的最大利润. 利润 = 卖价 - (买价 + 路费) 样例数据, 最近是从第一个点买入, 第4 ...
随机推荐
- [PWA] 13. New db and object store
Create a db: import idb from 'idb'; var dbPromise = idb.open('test-db', 2, function (upgradeDb) { sw ...
- MYSQL 体系结构图
- [转] shared_from_this 几个值得注意的地方
http://hi.baidu.com/cpuramdisk/item/7c2f8d77385e0f29d7a89cf0 shared_from_this()是enable_shared_from_t ...
- linux安装tomcat(转载:http://blog.csdn.net/zhuihunmiling/article/details/8977387)
在安装Tomcat之前需要安装j2sdk(Java 2 Software Development Kit),也就是JDK 1.安装JDK完毕. 2.安装Tomcat 1)下载apache-tomcat ...
- python增删改查
###增删改查 names = ["zhangding","wangxu","wudong","cheng"] #增na ...
- Template Method 模板方法
简介 定义一个操作中的算法的骨架,而将一些步骤延迟到子类中. 模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤的细节 抽象模板AbstractClass的方法分为两类: 基本 ...
- DEDECMS织梦列表页每隔N行文章添加一条分隔线
这是给一个朋友做模板的时候,用到的一个小小的技巧,今天正好用上了,以前看到有人问过不知道解决没有,今天整理了一下,本想保存在自己的电脑里,后来一想,不如咱们一起共享一下,也是对织梦的感恩,有好东西就来 ...
- 使用jq深入研究轮播图特性
网站轮播图 太耳熟的词了 基本上做pc端的 主页绝壁会来一个轮播图的特效 轮播图他一个页面页面的切换,其实的原理是通过css的定位 ,定位到一起,第一张首先显示,其余默认隐藏. 今天我实现的这个轮播 ...
- Canvas transform浅析
没有前奏,直接进入主题 transform调用方法: ctx.transform(a,b,c,d,e,f);如下 var ctx = document.getElementById("myC ...
- http2.0
HTTP2.0性能增强的核心:二进制分帧 HTTP 2.0最大的特点: 不会改动HTTP 的语义,HTTP 方法.状态码.URI 及首部字段,等等这些核心概念上一如往常,却能致力于突破上一代标准的性能 ...