【注意事项】

为了体现增强版,题目限制和数据范围有所增强:

时间限制:1.5s

内存限制:128MB

对于15% 的数据,1<=N,Q<=1000.

对于35% 的数据,1<=N,Q<=10000.

对于50% 的数据,1<=N,Q<=100000,且数据均为官方数据.

对于100% 的数据,1<=N,Q<=1000000.

请注意常数因子对于程序运行的影响。

  并查集很简单,并查集就是倒序处理,表示删除一个点的标记,删除后不会再加回来,删完后,合并当前点与其father的集合,根为father的原来的根,具体看代码……

 #include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
using namespace std;
const int N=;
int cnt,fir[N],to[N*],nxt[N*];
void addedge(int a,int b){
nxt[++cnt]=fir[a];
to[fir[a]=cnt]=b;
}
int fa[N],vis[N],pre[N];
int qr[N],tp[N],ans[N];
void DFS(int x){
for(int i=fir[x];i;i=nxt[i])
if(to[i]!=pre[x]){
pre[to[i]]=x;
DFS(to[i]);
}
}
void DFS(int x,int f){
fa[x]=f;
for(int i=fir[x];i;i=nxt[i])
if(to[i]!=pre[x]){
if(!vis[to[i]])DFS(to[i],f);
else DFS(to[i],to[i]);
}
}
int Find(int x){return fa[x]==x?x:fa[x]=Find(fa[x]);}
int n,Q;char op[];
int main(){
freopen("tree++.in","r",stdin);
freopen("tree++.out","w",stdout);
int sz=<<;
char*p=(char*)malloc(sz)+sz;
__asm__("movl %0,%%esp\n"::"r"(p));
scanf("%d%d",&n,&Q);
for(int i=,a,b;i<n;i++){
scanf("%d%d",&a,&b);
addedge(a,b);
addedge(b,a);
}DFS();
for(int i=;i<=Q;i++){
scanf("%s%d",op,&qr[i]);
tp[i]=op[]=='Q'?:;
}
vis[]=;
for(int i=;i<=Q;i++)
if(tp[i])vis[qr[i]]+=;
DFS(,);
for(int i=Q;i>=;i--){
if(!tp[i])
ans[i]=Find(qr[i]);
else{
if(!--vis[qr[i]]){
int x=qr[i];
fa[x]=Find(pre[x]);
}
}
}
for(int i=;i<=Q;i++)
if(!tp[i])printf("%d\n",ans[i]);
return ;
}

  树链剖分很好想,但慢了些。

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <ctime>
using namespace std;
const int N=;
int cnt,fir[N],nxt[N*],to[N*];
void addedge(int a,int b){
nxt[++cnt]=fir[a];to[fir[a]=cnt]=b;
nxt[++cnt]=fir[b];to[fir[b]=cnt]=a;
}
int sz[N],son[N],fa[N],dep[N];
void DFS(int x){sz[x]=;
for(int i=fir[x];i;i=nxt[i])
if(to[i]!=fa[x]){
dep[to[i]]=dep[fa[to[i]]=x]+;
DFS(to[i]);sz[x]+=sz[to[i]];
if(sz[son[x]]<sz[to[i]])son[x]=to[i];
}
}
int tot,id[N],rid[N],top[N];
void DFS(int x,int tp){
top[rid[id[x]=++tot]=x]=tp;
if(son[x])DFS(son[x],tp);
for(int i=fir[x];i;i=nxt[i])
if(to[i]!=fa[x]&&to[i]!=son[x])
DFS(to[i],to[i]);
}
int sum[N*],pos[N*];
#define mid (l+r>>1)
void Push_up(int x){
sum[x]=sum[x<<]+sum[x<<|];
if(sum[x]==)pos[x]=;
if(sum[x<<|])pos[x]=pos[x<<|];
else pos[x]=pos[x<<];
}
void Update(int x,int l,int r,int g){
if(l==r){pos[x]=rid[l];sum[x]+=;return;}
if(mid>=g)Update(x<<,l,mid,g);
else Update(x<<|,mid+,r,g);
Push_up(x);
} int Query(int x,int l,int r,int a,int b){
//if(!sum[x])return 0;
if(l>=a&&r<=b)return pos[x];int ret=;
if(mid<b)ret=Query(x<<|,mid+,r,a,b);
if(!ret&&mid>=a)ret=Query(x<<,l,mid,a,b);
return ret;
} int tag[N],n,Q,x;
int Solve(int x){
while(x){
int d=Query(,,n,id[top[x]],id[x]);
if(d)return d;x=fa[top[x]];
}
return ;
}
char op[],c;
void read(int &x){
x=;while(c=getchar(),c>''||c<'');
while(x=x*+(c^),c=getchar(),c>=''&&c<='');
}
int main(){
freopen("tree++.in","r",stdin);
freopen("tree++.out","w",stdout);
read(n);read(Q);
int size = << ; // 256MB
char *p = (char*)malloc(size) + size;
__asm__("movl %0, %%esp\n" :: "r"(p));
for(int i=,a,b;i<n;i++){
read(a);read(b);
addedge(a,b);
}
DFS();DFS(,);
Update(,,n,);tag[]=;
while(Q--){
scanf("%s",op);read(x);
if(op[]=='C'){
if(tag[x])continue;
Update(,,n,id[x]);
tag[x]=;
}
else{
printf("%d\n",Solve(x));
}
}
//printf("%.2f\n",1.0*clock()/CLOCKS_PER_SEC);
return ;
}

数据结构(并查集||树链剖分):HEOI 2016 tree的更多相关文章

  1. 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树

    正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...

  2. 并查集+树链剖分+线段树 HDOJ 5458 Stability(稳定性)

    题目链接 题意: 有n个点m条边的无向图,有环还有重边,a到b的稳定性的定义是有多少条边,单独删去会使a和b不连通.有两种操作: 1. 删去a到b的一条边 2. 询问a到b的稳定性 思路: 首先删边考 ...

  3. 2019西北工业大学程序设计创新实践基地春季选拔赛 I Chino with Rewrite (并查集+树链剖分+线段树)

    链接:https://ac.nowcoder.com/acm/contest/553/I 思路:离线整棵树,用并查集维护下联通的情况,因为值只有60个,用2的x(1<=x<=60)次方表示 ...

  4. 【BZOJ3626】LCA(树链剖分,Link-Cut Tree)

    [BZOJ3626]LCA(树链剖分,Link-Cut Tree) 题面 Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1. ...

  5. 【BZOJ2157】旅游(树链剖分,Link-Cut Tree)

    [BZOJ2157]旅游(树链剖分,Link-Cut Tree) 题面 Description Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥 ...

  6. 洛谷P4482 [BJWC2018]Border 的四种求法 字符串,SAM,线段树合并,线段树,树链剖分,DSU on Tree

    原文链接https://www.cnblogs.com/zhouzhendong/p/LuoguP4482.html 题意 给定一个字符串 S,有 q 次询问,每次给定两个数 L,R ,求 S[L.. ...

  7. 【NOI复习】树链剖分

    简介 树链剖分通常用来解决一类维护静态树上路径信息的问题, 例如:给定一棵点带权树, 接下来每次操作会修改某条路径上所有点的权值(修改为同一个值或是同加上一个值等) , 以及询问某条路径上所有点的权值 ...

  8. 树链剖分 (求LCA,第K祖先,轻重链剖分、长链剖分)

      2020/4/30   15:55 树链剖分是一种十分实用的树的方法,用来处理LCA等祖先问题,以及对一棵树上的节点进行批量修改.权值和查询等有奇效. So, what is 树链剖分? 可以简单 ...

  9. HDU 5458 Stability (树链剖分+并查集+set)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 给你n个点,m条边,q个操作,操作1是删边,操作2是问u到v之间的割边有多少条. 这题要倒着做才 ...

随机推荐

  1. Big Data應用:以"玩家意見"之數據分析來探討何謂"健康型線上遊戲"(上)

    首先,所有資料都可以從網路上找到,只是我做了一些分析與整理而已.純粹分享心得~~ 最近再做研究的時候我跟我的同事K先生在某次偶然的討論中發現了一件有趣的事情. [疑~~~~~~~新楓之谷的玩家人氣指數 ...

  2. JDK1.8 Lambda

    1.模拟Model /** * Author:JsonLu * DateTime:16/12/8 14:01 * Email:jsonlu@qq.com * Desc: */ public class ...

  3. HTML5 <a>标签download 属性

    一.简单实例 <a href="../images/1.jpg" download="下载图片.jpg"> 点击按钮下载 </a> 二. ...

  4. 【html】【3】html标签列表

    必看参考: http://www.divcss5.com/html/h323.shtml http://www.w3school.com.cn/tags/tag_html.asp 常用: <ht ...

  5. 转:Android软件开发之PreferenceActivity中的组件

    本文转于 “雨松MOMO的程序世界” 博客,请务必保留此出处http://xys289187120.blog.51cto.com/3361352/656784 1.PreferenceActivity ...

  6. Spring回顾

    1.IOC和DI IOC:Inversion of Control(控制反转)是一个重要的面对对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心. IOC理解:将组件对象的控 ...

  7. Python:元组(tuple)

    #!/usr/bin/python3 #元组 tup1 = ('Google', 'Runoob', 1997, 2000) print(type(tup1)) print("tup1 &q ...

  8. cmake简易教程

    用cmake替代makefile,构建项目还是蛮简单实用的. 工程目录下src放源代码,build保存所有的编译过程和结果. 首先看看src目录下的源代码结构: 最顶层CMakeLists.txt内容 ...

  9. 关于 const 成员函数

    成员函数如果是const意味着什么? 有两个流行概念:物理常量性和逻辑常量性. C++对常量性的定义采用的是物理常量性概念,即const 成员函数不可以更改对象内任何non-static成员变量.例如 ...

  10. float浮动引起的ul高度崩溃与overflow的关系

        今天遇到的问题真的让人不得不吐槽,因为一个很小的问题,花费了半天的时间来才解决这个问题.一直认为自己对Html与Css了解应该算蛮不错的,但是今天遇到的事情让我不得不反省自己的学习心态上的错误 ...