Aggregation Models
这是Coursera上《机器学习技法》的课程笔记。
Aggregation models: mix or combine hypotheses for better performance, and it's a rich family. Aggregation can do better with many (possibly weaker) hypotheses.
Suppose we have $T$ hypotheses ,denoted by $g_1$, $g_2$, ... ,$g_T$. There are four different approachs to get a appregation model:
1.Select the best one $g_{t_*}$ from validation error $$G(x)=g_{t_*}(x) with t_*=argmin_{t \in \{1,2,...,T\}}E_{val}(g^-_t)$$
2.Mix all hypotheses uniformly $$G(x)=sign(\sum_{t=1}^T1*g_t(x))$$
3.mix all hypotheses non-uniformly $$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) \quad with \quad \alpha_t \geq 0$$
NOTE: conclude select and mix uniformly.
4.Combine all hypotheses conditionally $$G(x)=sign(\sum_{t=1}^Tq_t(x)*g_t(x)) \quad with \quad q_t(x)\geq 0$$
NOTE: conclude non-uniformly
Why aggregation work?
In the left graph, we get a strong $G(x)$ by mixing different weak hypotheses uniformly. In some sense, aggregation can be seen as feature transform.
In the right graph, we get a moderate $G(x)$ by mixing different weak hypotheses uniformly. In some sense, aggregation can be seen as regularization.
appgegation type | blending | learning |
uniform | voting/averging | Bagging |
non-uniform | linear | Adaboost |
conditional | stacking | Decision Tree |
Uniform Blending
Classification: $G(x)=sign(\sum_{t=1}^T1*g_t(x))$
Regression:$G(x)=\frac{1}{T}\sum_{t=1}^Tg_t(x)$
And uniformly blending can reduce variance for more stable performance(数学推导可见课件207_handout.pdf).
Linear Blending
Classification:$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) \quad with \quad \alpha_t \geq 0$
Regression:$G(x)=\frac{1}{T}\sum_{t=1}^T\alpha_t*g_t(x) \quad with \quad \alpha_t \geq 0$
How to choose $\alpha$? We need get some $\alpha$ to minimize $E_{in}$. $$\mathop {\min }\limits_{\alpha_t\geq0}\frac{1}{N}\sum_{n=1}^Nerr\Big(y_n,\sum_{t=1}^T\alpha_tg_t(x_n)\Big)$$
so $ linear blending = LinModel + hypotheses as transform + constraints$.
Given $g_1^-$, $g_2^-$, ..., $g_T^-$ from $D_{train}$, transform $(x_n, y_n)$ in $D_{val}$ to $(z_n=\Phi^-(x_n),y_n)$,where $\Phi^-(x)=(g_1^-(x),...,g_T^-(x))$.And
- compute $\alpha$ = LinearModel$\Big(\{(z_n,y_n)\}\Big)$
- return $G_{LINB}(x)=LinearHypothesis_\alpha(\Phi(x))$
Bootstrap Aggregation(bagging)
Bootstrap sample $\widetilde{D}_t$: resample N examples from $D$ uniformly with replacement - can also use arbitracy N' instead of N.
bootstrap aggregation:
consider a physical iterative process that for t=1,2,...,T:
- request size-N' data $\widetilde{D}_t$ from bootstrap;
- obtain $g_t$ by $\mathcal{A}(\widetilde{D}_t)$, $G=Uniform(\{g_t\})$.
Adaptive Boosting (AdaBoost) Algorithm
Decision Tree
Random Forest
$$RF = bagging +random-subspace C&RT$$
Aggregation Models的更多相关文章
- 机器学习技法课之Aggregation模型
Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记 ...
- 机器学习技法-GBDT算法
课程地址:https://class.coursera.org/ntumltwo-002/lecture 之前看过别人的竞赛视频,知道GBDT这个算法应用十分广泛.林在第八讲,简单的介绍了AdaBoo ...
- 机器学习技法:11 Gradient Boosted Decision Tree
Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...
- 机器学习技法笔记:11 Gradient Boosted Decision Tree
Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...
- Django Aggregation聚合 django orm 求平均、去重、总和等常用方法
Django Aggregation聚合 在当今根据需求而不断调整而成的应用程序中,通常不仅需要能依常规的字段,如字母顺序或创建日期,来对项目进行排序,还需要按其他某种动态数据对项目进行排序.Djng ...
- 2:django models Making queries
这是后面要用到的类 class Blog(models.Model): name = models.CharField(max_length=100) tagline = models.TextFie ...
- How to Choose the Best Way to Pass Multiple Models in ASP.NET MVC
Snesh Prajapati, 8 Dec 2014 http://www.codeproject.com/Articles/717941/How-to-Choose-the-Best-Way-to ...
- The Three Models of ASP.NET MVC Apps
12 June 2012 by Dino Esposito by Dino Esposito We've inherited from the original MVC pattern a ra ...
- Django models对象的select_related方法(减少查询次数)
表结构 先创建一个新的app python manage.py startapp test01 在settings.py注册一下app INSTALLED_APPS = ( 'django.contr ...
随机推荐
- SpringMVC11文件上传
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"% ...
- Java编程思想-注解生成外部例子代码
如果本文帮助到您,请点击下面的链接,这是本人的网站,以示鼓励,谢谢!链接绝对安全! 本人的网站 java注解属于java中高大上的功能,许多开源框架都使用了java注解的功能.比如spring,hib ...
- windows服务状态自动启动
很多人制作成Windows服务安装包时发现明明在属性里面设置了自动启动,可在服务安装完成以后,还需要手动启动服务,我这里有一种完全实现自动启动的方法 在ProjectInstaller.cs 文件做文 ...
- 移动端web开发调试
手机上安装chrome, 连接上usb允许调试,打开电脑的chrome,输入chrome://inspect 点击电脑页面的inspect即可,这时操作手机和电脑能达到同步显示. android4.4 ...
- 重新开始学习javase_对象的初始化
一.类加载机制 类加载的时机类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载.验证.准备.解析.初始化.使用.卸载7的阶段: 加载.验证.准备.初始化和卸载这5个阶段的顺序是 ...
- ubuntu下apache与php配置
实验环境 uname -a Linux tomato 4.4.0-34-generic #53-Ubuntu SMP Wed Jul 27 16:06:39 UTC 2016 x86_64 x86_6 ...
- 【COGS1049】天空中的繁星
[题目背景] 第二届『Citric』杯NOIP提高组模拟赛 第二题 [题目描述] Lemon最近买了一台数码相机.某天Lemon很无聊,于是对着夜空拍了一张照片,然后把照片导入了电脑.Lemon想依靠 ...
- 【USACO 2.2.4】派对灯
[描述] 在IOI98的节日宴会上,我们有N(10<=N<=100)盏彩色灯,他们分别从1到N被标上号码. 这些灯都连接到四个按钮: 按钮1:当按下此按钮,将改变所有的灯:本来亮着的灯就熄 ...
- 手机端MVC-js框架-Gillie-中文版本
译者声明: 1.代码库发布在http://pablovallejo.github.io/gillie/ 2.查看API介绍直接戳这里看整理. Gillie是一个轻型MVC框架,受Backbone的启发 ...
- undefined 和 null 的异同
在javascript中,undefined和Null是两个比较特殊的值.但有时候在判断时就有点迷糊.依个人浅见,整理如下: 1.数据类型 众多周知,在javascript中存在五种基本类型,即und ...