这是Coursera上《机器学习技法》的课程笔记。

  Aggregation models: mix or combine hypotheses for better performance, and it's a rich family. Aggregation can do better with many (possibly weaker) hypotheses.

  Suppose we have $T$ hypotheses ,denoted by $g_1$, $g_2$, ... ,$g_T$. There are four different approachs to get a appregation model:

1.Select the best one $g_{t_*}$ from validation error $$G(x)=g_{t_*}(x) with t_*=argmin_{t \in \{1,2,...,T\}}E_{val}(g^-_t)$$

2.Mix all hypotheses uniformly $$G(x)=sign(\sum_{t=1}^T1*g_t(x))$$

3.mix all hypotheses non-uniformly $$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) \quad with \quad  \alpha_t \geq 0$$

  NOTE: conclude select and mix uniformly.

4.Combine all hypotheses conditionally $$G(x)=sign(\sum_{t=1}^Tq_t(x)*g_t(x)) \quad  with \quad  q_t(x)\geq 0$$

  NOTE: conclude non-uniformly

Why aggregation work?

In the left graph,  we get a strong $G(x)$ by mixing different weak hypotheses uniformly.  In some sense, aggregation can be seen as feature transform.

In the right graph, we get a moderate $G(x)$ by mixing different weak hypotheses uniformly.  In some sense, aggregation can be seen as regularization.

          appgegation type              blending                 learning       
                 uniform        voting/averging     Bagging
             non-uniform                linear      Adaboost
              conditional             stacking       Decision Tree 

Uniform Blending

Classification: $G(x)=sign(\sum_{t=1}^T1*g_t(x))$

Regression:$G(x)=\frac{1}{T}\sum_{t=1}^Tg_t(x)$

And uniformly blending can reduce variance for more stable performance(数学推导可见课件207_handout.pdf).

Linear Blending

Classification:$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) \quad with \quad  \alpha_t \geq 0$

Regression:$G(x)=\frac{1}{T}\sum_{t=1}^T\alpha_t*g_t(x) \quad with \quad  \alpha_t \geq 0$

How to choose $\alpha$?  We need get some $\alpha$ to minimize $E_{in}$. $$\mathop {\min }\limits_{\alpha_t\geq0}\frac{1}{N}\sum_{n=1}^Nerr\Big(y_n,\sum_{t=1}^T\alpha_tg_t(x_n)\Big)$$

so $ linear blending = LinModel + hypotheses as transform + constraints$.

  Given $g_1^-$, $g_2^-$, ..., $g_T^-$ from $D_{train}$, transform $(x_n, y_n)$ in $D_{val}$  to $(z_n=\Phi^-(x_n),y_n)$,where $\Phi^-(x)=(g_1^-(x),...,g_T^-(x))$.And

  1. compute $\alpha$ = LinearModel$\Big(\{(z_n,y_n)\}\Big)$
  2. return $G_{LINB}(x)=LinearHypothesis_\alpha(\Phi(x))$

Bootstrap Aggregation(bagging)

Bootstrap sample $\widetilde{D}_t$: resample N examples  from $D$ uniformly with replacement - can also use arbitracy N' instead of N.

bootstrap aggregation:

  consider a physical iterative process that for t=1,2,...,T:

  1. request size-N' data $\widetilde{D}_t$ from bootstrap;
  2. obtain $g_t$ by $\mathcal{A}(\widetilde{D}_t)$, $G=Uniform(\{g_t\})$.

Adaptive Boosting (AdaBoost) Algorithm

Decision Tree

Random Forest

$$RF = bagging +random-subspace C&RT$$

Aggregation Models的更多相关文章

  1. 机器学习技法课之Aggregation模型

    Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记 ...

  2. 机器学习技法-GBDT算法

    课程地址:https://class.coursera.org/ntumltwo-002/lecture 之前看过别人的竞赛视频,知道GBDT这个算法应用十分广泛.林在第八讲,简单的介绍了AdaBoo ...

  3. 机器学习技法:11 Gradient Boosted Decision Tree

    Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...

  4. 机器学习技法笔记:11 Gradient Boosted Decision Tree

    Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...

  5. Django Aggregation聚合 django orm 求平均、去重、总和等常用方法

    Django Aggregation聚合 在当今根据需求而不断调整而成的应用程序中,通常不仅需要能依常规的字段,如字母顺序或创建日期,来对项目进行排序,还需要按其他某种动态数据对项目进行排序.Djng ...

  6. 2:django models Making queries

    这是后面要用到的类 class Blog(models.Model): name = models.CharField(max_length=100) tagline = models.TextFie ...

  7. How to Choose the Best Way to Pass Multiple Models in ASP.NET MVC

    Snesh Prajapati, 8 Dec 2014 http://www.codeproject.com/Articles/717941/How-to-Choose-the-Best-Way-to ...

  8. The Three Models of ASP.NET MVC Apps

    12 June 2012  by Dino Esposito by Dino Esposito   We've inherited from the original MVC pattern a ra ...

  9. Django models对象的select_related方法(减少查询次数)

    表结构 先创建一个新的app python manage.py startapp test01 在settings.py注册一下app INSTALLED_APPS = ( 'django.contr ...

随机推荐

  1. SpringMVC11文件上传

    <%@ page language="java" import="java.util.*" pageEncoding="UTF-8"% ...

  2. Java编程思想-注解生成外部例子代码

    如果本文帮助到您,请点击下面的链接,这是本人的网站,以示鼓励,谢谢!链接绝对安全! 本人的网站 java注解属于java中高大上的功能,许多开源框架都使用了java注解的功能.比如spring,hib ...

  3. windows服务状态自动启动

    很多人制作成Windows服务安装包时发现明明在属性里面设置了自动启动,可在服务安装完成以后,还需要手动启动服务,我这里有一种完全实现自动启动的方法 在ProjectInstaller.cs 文件做文 ...

  4. 移动端web开发调试

    手机上安装chrome, 连接上usb允许调试,打开电脑的chrome,输入chrome://inspect 点击电脑页面的inspect即可,这时操作手机和电脑能达到同步显示. android4.4 ...

  5. 重新开始学习javase_对象的初始化

    一.类加载机制 类加载的时机类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载.验证.准备.解析.初始化.使用.卸载7的阶段: 加载.验证.准备.初始化和卸载这5个阶段的顺序是 ...

  6. ubuntu下apache与php配置

    实验环境 uname -a Linux tomato 4.4.0-34-generic #53-Ubuntu SMP Wed Jul 27 16:06:39 UTC 2016 x86_64 x86_6 ...

  7. 【COGS1049】天空中的繁星

    [题目背景] 第二届『Citric』杯NOIP提高组模拟赛 第二题 [题目描述] Lemon最近买了一台数码相机.某天Lemon很无聊,于是对着夜空拍了一张照片,然后把照片导入了电脑.Lemon想依靠 ...

  8. 【USACO 2.2.4】派对灯

    [描述] 在IOI98的节日宴会上,我们有N(10<=N<=100)盏彩色灯,他们分别从1到N被标上号码. 这些灯都连接到四个按钮: 按钮1:当按下此按钮,将改变所有的灯:本来亮着的灯就熄 ...

  9. 手机端MVC-js框架-Gillie-中文版本

    译者声明: 1.代码库发布在http://pablovallejo.github.io/gillie/ 2.查看API介绍直接戳这里看整理. Gillie是一个轻型MVC框架,受Backbone的启发 ...

  10. undefined 和 null 的异同

    在javascript中,undefined和Null是两个比较特殊的值.但有时候在判断时就有点迷糊.依个人浅见,整理如下: 1.数据类型 众多周知,在javascript中存在五种基本类型,即und ...