这是Coursera上《机器学习技法》的课程笔记。

  Aggregation models: mix or combine hypotheses for better performance, and it's a rich family. Aggregation can do better with many (possibly weaker) hypotheses.

  Suppose we have $T$ hypotheses ,denoted by $g_1$, $g_2$, ... ,$g_T$. There are four different approachs to get a appregation model:

1.Select the best one $g_{t_*}$ from validation error $$G(x)=g_{t_*}(x) with t_*=argmin_{t \in \{1,2,...,T\}}E_{val}(g^-_t)$$

2.Mix all hypotheses uniformly $$G(x)=sign(\sum_{t=1}^T1*g_t(x))$$

3.mix all hypotheses non-uniformly $$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) \quad with \quad  \alpha_t \geq 0$$

  NOTE: conclude select and mix uniformly.

4.Combine all hypotheses conditionally $$G(x)=sign(\sum_{t=1}^Tq_t(x)*g_t(x)) \quad  with \quad  q_t(x)\geq 0$$

  NOTE: conclude non-uniformly

Why aggregation work?

In the left graph,  we get a strong $G(x)$ by mixing different weak hypotheses uniformly.  In some sense, aggregation can be seen as feature transform.

In the right graph, we get a moderate $G(x)$ by mixing different weak hypotheses uniformly.  In some sense, aggregation can be seen as regularization.

          appgegation type              blending                 learning       
                 uniform        voting/averging     Bagging
             non-uniform                linear      Adaboost
              conditional             stacking       Decision Tree 

Uniform Blending

Classification: $G(x)=sign(\sum_{t=1}^T1*g_t(x))$

Regression:$G(x)=\frac{1}{T}\sum_{t=1}^Tg_t(x)$

And uniformly blending can reduce variance for more stable performance(数学推导可见课件207_handout.pdf).

Linear Blending

Classification:$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) \quad with \quad  \alpha_t \geq 0$

Regression:$G(x)=\frac{1}{T}\sum_{t=1}^T\alpha_t*g_t(x) \quad with \quad  \alpha_t \geq 0$

How to choose $\alpha$?  We need get some $\alpha$ to minimize $E_{in}$. $$\mathop {\min }\limits_{\alpha_t\geq0}\frac{1}{N}\sum_{n=1}^Nerr\Big(y_n,\sum_{t=1}^T\alpha_tg_t(x_n)\Big)$$

so $ linear blending = LinModel + hypotheses as transform + constraints$.

  Given $g_1^-$, $g_2^-$, ..., $g_T^-$ from $D_{train}$, transform $(x_n, y_n)$ in $D_{val}$  to $(z_n=\Phi^-(x_n),y_n)$,where $\Phi^-(x)=(g_1^-(x),...,g_T^-(x))$.And

  1. compute $\alpha$ = LinearModel$\Big(\{(z_n,y_n)\}\Big)$
  2. return $G_{LINB}(x)=LinearHypothesis_\alpha(\Phi(x))$

Bootstrap Aggregation(bagging)

Bootstrap sample $\widetilde{D}_t$: resample N examples  from $D$ uniformly with replacement - can also use arbitracy N' instead of N.

bootstrap aggregation:

  consider a physical iterative process that for t=1,2,...,T:

  1. request size-N' data $\widetilde{D}_t$ from bootstrap;
  2. obtain $g_t$ by $\mathcal{A}(\widetilde{D}_t)$, $G=Uniform(\{g_t\})$.

Adaptive Boosting (AdaBoost) Algorithm

Decision Tree

Random Forest

$$RF = bagging +random-subspace C&RT$$

Aggregation Models的更多相关文章

  1. 机器学习技法课之Aggregation模型

    Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记 ...

  2. 机器学习技法-GBDT算法

    课程地址:https://class.coursera.org/ntumltwo-002/lecture 之前看过别人的竞赛视频,知道GBDT这个算法应用十分广泛.林在第八讲,简单的介绍了AdaBoo ...

  3. 机器学习技法:11 Gradient Boosted Decision Tree

    Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...

  4. 机器学习技法笔记:11 Gradient Boosted Decision Tree

    Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...

  5. Django Aggregation聚合 django orm 求平均、去重、总和等常用方法

    Django Aggregation聚合 在当今根据需求而不断调整而成的应用程序中,通常不仅需要能依常规的字段,如字母顺序或创建日期,来对项目进行排序,还需要按其他某种动态数据对项目进行排序.Djng ...

  6. 2:django models Making queries

    这是后面要用到的类 class Blog(models.Model): name = models.CharField(max_length=100) tagline = models.TextFie ...

  7. How to Choose the Best Way to Pass Multiple Models in ASP.NET MVC

    Snesh Prajapati, 8 Dec 2014 http://www.codeproject.com/Articles/717941/How-to-Choose-the-Best-Way-to ...

  8. The Three Models of ASP.NET MVC Apps

    12 June 2012  by Dino Esposito by Dino Esposito   We've inherited from the original MVC pattern a ra ...

  9. Django models对象的select_related方法(减少查询次数)

    表结构 先创建一个新的app python manage.py startapp test01 在settings.py注册一下app INSTALLED_APPS = ( 'django.contr ...

随机推荐

  1. codevs2622数字序列( 连续子序列最大和O(n)算法)

    /* 算法描述:维护一个s[p]表示累加和 并且更新最大值ans 如果s[p]<0 则从p+1重新累加 证明:设某个区间的起点和终点分别为s t 分两种情况 1.t<p:设s2表示1到s的 ...

  2. 关于git的一些常用命令

    1.git init 把目录变成Git可以管理的仓库 2.git add 把文件添加到仓库 3.git commit -m "" 把文件提交到仓库,-m后面是提交说明 4.git ...

  3. struts2学生信息管理系统篇章③

    package com.java1234.util; public class PageUtil { //传进来四个参数,tagetUtil是跳转链接的头部,totalNum是总个数,currentP ...

  4. [转帖]gesture recognition

    http://wenku.baidu.com/view/53c3331a6bd97f192279e9c9.html HSI与RGB的Matlab实现. http://wenku.baidu.com/v ...

  5. Asp.net 导航条【1】

    PHP比较成熟的开放的源代码比较多,比方说PrestaShop,比方说Discuz!...... 虽然语言不同,但基本原理是一样的,有时间的话读一读,对学习ASP.NET应该是非常有好处的(唉,什么时 ...

  6. sencha app build 到 Capturing theme image不执行

    解决sencha app build 到 Capturing theme image不执行 今天电脑重装系统,重新安装了sencha cmd,但是在打包时,到了 Capturing theme ima ...

  7. C++ 实现网络爬虫

    吐槽 前天心血来潮, 把自己面试经历下了下来. 我觉得自己求职一路来比较心酸, 也付出了比一般人更多的汗水. 本以为写出来, 好歹可以作为一篇励志故事. 得到的评论却是, 语言只是一门工具. ||| ...

  8. javascript定义变量和优先级的问题

    本文链接: javascript定义变量和优先级的问题.转载请保留.   看下面的代码: if (!("aa" in window)) { alert('oh my god'); ...

  9. 08_linux下安装chrome

    首先下载chrome,需要改hosts哦(o(^▽^)o,别告诉我你不会,可以问度娘.谷哥哦) 下载地址:https://dl.google.com/linux/direct/google-chrom ...

  10. 下拉菜单选择(jQuery实现)

    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...