Aggregation Models
这是Coursera上《机器学习技法》的课程笔记。
Aggregation models: mix or combine hypotheses for better performance, and it's a rich family. Aggregation can do better with many (possibly weaker) hypotheses.
Suppose we have $T$ hypotheses ,denoted by $g_1$, $g_2$, ... ,$g_T$. There are four different approachs to get a appregation model:
1.Select the best one $g_{t_*}$ from validation error $$G(x)=g_{t_*}(x) with t_*=argmin_{t \in \{1,2,...,T\}}E_{val}(g^-_t)$$
2.Mix all hypotheses uniformly $$G(x)=sign(\sum_{t=1}^T1*g_t(x))$$
3.mix all hypotheses non-uniformly $$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) \quad with \quad \alpha_t \geq 0$$
NOTE: conclude select and mix uniformly.
4.Combine all hypotheses conditionally $$G(x)=sign(\sum_{t=1}^Tq_t(x)*g_t(x)) \quad with \quad q_t(x)\geq 0$$
NOTE: conclude non-uniformly
Why aggregation work?

In the left graph, we get a strong $G(x)$ by mixing different weak hypotheses uniformly. In some sense, aggregation can be seen as feature transform.
In the right graph, we get a moderate $G(x)$ by mixing different weak hypotheses uniformly. In some sense, aggregation can be seen as regularization.
| appgegation type | blending | learning |
| uniform | voting/averging | Bagging |
| non-uniform | linear | Adaboost |
| conditional | stacking | Decision Tree |
Uniform Blending
Classification: $G(x)=sign(\sum_{t=1}^T1*g_t(x))$
Regression:$G(x)=\frac{1}{T}\sum_{t=1}^Tg_t(x)$
And uniformly blending can reduce variance for more stable performance(数学推导可见课件207_handout.pdf).
Linear Blending
Classification:$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) \quad with \quad \alpha_t \geq 0$
Regression:$G(x)=\frac{1}{T}\sum_{t=1}^T\alpha_t*g_t(x) \quad with \quad \alpha_t \geq 0$
How to choose $\alpha$? We need get some $\alpha$ to minimize $E_{in}$. $$\mathop {\min }\limits_{\alpha_t\geq0}\frac{1}{N}\sum_{n=1}^Nerr\Big(y_n,\sum_{t=1}^T\alpha_tg_t(x_n)\Big)$$
so $ linear blending = LinModel + hypotheses as transform + constraints$.
Given $g_1^-$, $g_2^-$, ..., $g_T^-$ from $D_{train}$, transform $(x_n, y_n)$ in $D_{val}$ to $(z_n=\Phi^-(x_n),y_n)$,where $\Phi^-(x)=(g_1^-(x),...,g_T^-(x))$.And
- compute $\alpha$ = LinearModel$\Big(\{(z_n,y_n)\}\Big)$
- return $G_{LINB}(x)=LinearHypothesis_\alpha(\Phi(x))$
Bootstrap Aggregation(bagging)
Bootstrap sample $\widetilde{D}_t$: resample N examples from $D$ uniformly with replacement - can also use arbitracy N' instead of N.
bootstrap aggregation:
consider a physical iterative process that for t=1,2,...,T:
- request size-N' data $\widetilde{D}_t$ from bootstrap;
- obtain $g_t$ by $\mathcal{A}(\widetilde{D}_t)$, $G=Uniform(\{g_t\})$.
Adaptive Boosting (AdaBoost) Algorithm

Decision Tree


Random Forest

$$RF = bagging +random-subspace C&RT$$
Aggregation Models的更多相关文章
- 机器学习技法课之Aggregation模型
Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记 ...
- 机器学习技法-GBDT算法
课程地址:https://class.coursera.org/ntumltwo-002/lecture 之前看过别人的竞赛视频,知道GBDT这个算法应用十分广泛.林在第八讲,简单的介绍了AdaBoo ...
- 机器学习技法:11 Gradient Boosted Decision Tree
Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...
- 机器学习技法笔记:11 Gradient Boosted Decision Tree
Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...
- Django Aggregation聚合 django orm 求平均、去重、总和等常用方法
Django Aggregation聚合 在当今根据需求而不断调整而成的应用程序中,通常不仅需要能依常规的字段,如字母顺序或创建日期,来对项目进行排序,还需要按其他某种动态数据对项目进行排序.Djng ...
- 2:django models Making queries
这是后面要用到的类 class Blog(models.Model): name = models.CharField(max_length=100) tagline = models.TextFie ...
- How to Choose the Best Way to Pass Multiple Models in ASP.NET MVC
Snesh Prajapati, 8 Dec 2014 http://www.codeproject.com/Articles/717941/How-to-Choose-the-Best-Way-to ...
- The Three Models of ASP.NET MVC Apps
12 June 2012 by Dino Esposito by Dino Esposito We've inherited from the original MVC pattern a ra ...
- Django models对象的select_related方法(减少查询次数)
表结构 先创建一个新的app python manage.py startapp test01 在settings.py注册一下app INSTALLED_APPS = ( 'django.contr ...
随机推荐
- C#编写QQ找茬外挂
QQ找茬外挂,用C#代码编写. 使用方法 这个工具的主要运行流程很简单:游戏截图->比较图片->标记图片不同点.实现代码 截图的处理类ScreenCapture: /// /// 提供全屏 ...
- POJ 3162 Walking Race(树的直径+单调队列)
题目大意:对一棵树,求出从每个结点出发能到走的最长距离(每个结点最多只能经过一次),将这些距离按排成一个数组得到dis[1],dis[2],dis[3]……dis[n] ,在数列的dis中求一个最长的 ...
- 转载:C#实现接口回调
通常情况下,我们创建一个对象,并马上直接去使用它的方法.然而,在有些情况下,希望能在某个场景出现后或条件满足时才调用此对象的方法.回调就可以解决这个“延迟调用对象方法”的问题.这个被调用方法的对象称为 ...
- CSS基本知识介绍
CSS (Cascading Style Sheet)叠层样式表.用于控制网页样式并允许将样式信息与网页内容分离的一种标记性语言. 样式的几种控制方法: 1.行内样式 <div ...
- 下载文档时Safari浏览器下载后出现".html"问题
下载代码是需要设置 Response.ContentType = "application/octet-stream", 不要设为application/x-msdownload, ...
- CSS中表示cellpadding和cellspacing的方法
本文和大家重点讨论一下用CSS来表示表格的cellpadding和cellspacing方法,表格的cellpadding和cellspacing我们经常会用一定的方式来清除默认样式,请看下文详细介绍 ...
- [转帖]AVS音视频编解码技术了解
AVS高清立体视频编码器 电视技术在经历了从黑白到彩色.从模拟到数字的技术变革之后正在酝酿另一场技术革命,从单纯观看二维场景的平面电视跨越到展现三维场景的立体电视3DTV.3DTV系统的核心问题之一是 ...
- META http-equiv 大全
META http-equiv 大全 HTTP-EQUIV类似于HTTP的头部协议,它回应给浏览器一些有用的信息,以帮助正确和精确地显示网页内容.常用的HTTP-EQUIV类型有: 1.Content ...
- 测试最新的log4cplus1.1.2版
#include "stdafx.h" #include <sstream> class AB{ public: void do_test() { ...
- 富文本web编辑器(UEditor)
展示效果: