这是Coursera上《机器学习技法》的课程笔记。

  Aggregation models: mix or combine hypotheses for better performance, and it's a rich family. Aggregation can do better with many (possibly weaker) hypotheses.

  Suppose we have $T$ hypotheses ,denoted by $g_1$, $g_2$, ... ,$g_T$. There are four different approachs to get a appregation model:

1.Select the best one $g_{t_*}$ from validation error $$G(x)=g_{t_*}(x) with t_*=argmin_{t \in \{1,2,...,T\}}E_{val}(g^-_t)$$

2.Mix all hypotheses uniformly $$G(x)=sign(\sum_{t=1}^T1*g_t(x))$$

3.mix all hypotheses non-uniformly $$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) \quad with \quad  \alpha_t \geq 0$$

  NOTE: conclude select and mix uniformly.

4.Combine all hypotheses conditionally $$G(x)=sign(\sum_{t=1}^Tq_t(x)*g_t(x)) \quad  with \quad  q_t(x)\geq 0$$

  NOTE: conclude non-uniformly

Why aggregation work?

In the left graph,  we get a strong $G(x)$ by mixing different weak hypotheses uniformly.  In some sense, aggregation can be seen as feature transform.

In the right graph, we get a moderate $G(x)$ by mixing different weak hypotheses uniformly.  In some sense, aggregation can be seen as regularization.

          appgegation type              blending                 learning       
                 uniform        voting/averging     Bagging
             non-uniform                linear      Adaboost
              conditional             stacking       Decision Tree 

Uniform Blending

Classification: $G(x)=sign(\sum_{t=1}^T1*g_t(x))$

Regression:$G(x)=\frac{1}{T}\sum_{t=1}^Tg_t(x)$

And uniformly blending can reduce variance for more stable performance(数学推导可见课件207_handout.pdf).

Linear Blending

Classification:$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) \quad with \quad  \alpha_t \geq 0$

Regression:$G(x)=\frac{1}{T}\sum_{t=1}^T\alpha_t*g_t(x) \quad with \quad  \alpha_t \geq 0$

How to choose $\alpha$?  We need get some $\alpha$ to minimize $E_{in}$. $$\mathop {\min }\limits_{\alpha_t\geq0}\frac{1}{N}\sum_{n=1}^Nerr\Big(y_n,\sum_{t=1}^T\alpha_tg_t(x_n)\Big)$$

so $ linear blending = LinModel + hypotheses as transform + constraints$.

  Given $g_1^-$, $g_2^-$, ..., $g_T^-$ from $D_{train}$, transform $(x_n, y_n)$ in $D_{val}$  to $(z_n=\Phi^-(x_n),y_n)$,where $\Phi^-(x)=(g_1^-(x),...,g_T^-(x))$.And

  1. compute $\alpha$ = LinearModel$\Big(\{(z_n,y_n)\}\Big)$
  2. return $G_{LINB}(x)=LinearHypothesis_\alpha(\Phi(x))$

Bootstrap Aggregation(bagging)

Bootstrap sample $\widetilde{D}_t$: resample N examples  from $D$ uniformly with replacement - can also use arbitracy N' instead of N.

bootstrap aggregation:

  consider a physical iterative process that for t=1,2,...,T:

  1. request size-N' data $\widetilde{D}_t$ from bootstrap;
  2. obtain $g_t$ by $\mathcal{A}(\widetilde{D}_t)$, $G=Uniform(\{g_t\})$.

Adaptive Boosting (AdaBoost) Algorithm

Decision Tree

Random Forest

$$RF = bagging +random-subspace C&RT$$

Aggregation Models的更多相关文章

  1. 机器学习技法课之Aggregation模型

    Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记 ...

  2. 机器学习技法-GBDT算法

    课程地址:https://class.coursera.org/ntumltwo-002/lecture 之前看过别人的竞赛视频,知道GBDT这个算法应用十分广泛.林在第八讲,简单的介绍了AdaBoo ...

  3. 机器学习技法:11 Gradient Boosted Decision Tree

    Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...

  4. 机器学习技法笔记:11 Gradient Boosted Decision Tree

    Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...

  5. Django Aggregation聚合 django orm 求平均、去重、总和等常用方法

    Django Aggregation聚合 在当今根据需求而不断调整而成的应用程序中,通常不仅需要能依常规的字段,如字母顺序或创建日期,来对项目进行排序,还需要按其他某种动态数据对项目进行排序.Djng ...

  6. 2:django models Making queries

    这是后面要用到的类 class Blog(models.Model): name = models.CharField(max_length=100) tagline = models.TextFie ...

  7. How to Choose the Best Way to Pass Multiple Models in ASP.NET MVC

    Snesh Prajapati, 8 Dec 2014 http://www.codeproject.com/Articles/717941/How-to-Choose-the-Best-Way-to ...

  8. The Three Models of ASP.NET MVC Apps

    12 June 2012  by Dino Esposito by Dino Esposito   We've inherited from the original MVC pattern a ra ...

  9. Django models对象的select_related方法(减少查询次数)

    表结构 先创建一个新的app python manage.py startapp test01 在settings.py注册一下app INSTALLED_APPS = ( 'django.contr ...

随机推荐

  1. 自定义控件(视图)2期笔记08:自定义控件之 9patch图说明

    1. 何为 9patch图 ?     它是一个对png图片做处理的一个工具,能够为我们生成一个"*.9.png"的图片:所谓"*.9.png"这是Androi ...

  2. codevs 1128 导弹拦截 (贪心)

    /* 题目大体意思是两套系统好多导弹 怎样分配使得两个系统所拦截的最大半径之和最小 贪心:把距离1系统最远的 让2拦截 记好距离 然后按照距离1由远到近排序 对于每一个导弹 如果这之前的都给2拦截 则 ...

  3. ASP.NET数据报表之柱状图 ------工作日志

    #region 柱形色调 /// <summary> /// 柱形色调 /// </summary> private string[] myColor = new string ...

  4. 2015 Multi-University Training Contest 2

    附上第二场比赛的链接 从5300-5309 我是链接 顺便贴出官方题解:

  5. Web中常用字体介绍(转)

    1.在Web编码中,CSS默认应用的Web字体是有限的,虽然在新版本的CSS3,我们可以通过新增的@font-face属性来引入特殊的浏览器加载字体. 浏览器中展示网页文字内容时,文字字体都会按照设计 ...

  6. socket.io实现

    后台代码 index_server.js var app = require('http').createServer(handler)//创建服务器app , io = require('socke ...

  7. ‘for’ loop initial declarations are only allowed in C99 mode

    #include <stdio.h>int main(){ for(int i=0;i<10;i++){ printf("\n%d",i); } return 0 ...

  8. CSS样式margin:0 auto不居中

    <style type="text/css">html,body{height:100%;width:960px;}.container{background-colo ...

  9. JVM笔记-逃逸分析

    参考: http://www.iteye.com/topic/473355http://blog.sina.com.cn/s/blog_4b6047bc01000avq.html 什么是逃逸分析(Es ...

  10. close函数

    int close(int sockfd); close一个TCP套接字的默认行为是把该套接字标记成已关闭,然后立即返回到调用进程, 该套接字描述符不能再由调用进程使用,也就是说它不能再作为read或 ...