魔怔愉悦之 Vizing 定理
Vizing 定理
定义 \(\Delta(G)\) 表示图 \(G\) 的点的最大度数,即 \(\displaystyle\Delta G=\max_{i=1}^{|V|}\deg(i)\) .
边色数问题:对图 \(G\) 的每条边染一种颜色,使得有公共点的边涂不同的颜色,若能用 \(k\) 种颜色给 \(G\) 的边着色就称对 \(G\) 的边进行了 \(k\) 着色,或称 \(G\) 是 \(k\)-边可着色的 .
若 \(G\) 是 \(k\)-边可着色,且不是 \((k-1)\)-边可着色的,就称 \(k\) 是 \(G\) 的边色数。记作 \(\chi'(G)\) .
Vizing 定理:
\(G\) 是简单图,则 \(\Delta(G)\le\chi'(G)\le\Delta(G)+1\) .
证明略 .
二分图 Vizing 定理
\(G\) 是二分图,则 \(\chi'(G)=\Delta(G)\) .
证明看 yspm 博客 .
例题
qiandao & UOJ444
一个 \((n,m)\) 点的二分图,\(k\) 条边,\(c\) 个颜色 .
一个点的代价是给其边染色之后边表中出现次数最多的颜色减去出现次数最少的颜色,求所有点的代价和的最小值 .
UOJ444 要求构造一组方案 .
随便一个点 \(u\),拆成 \(\deg(u)/c\) 个度数为 \(k\) 的节点和一个度数为 \(\deg(u)\bmod c\) 的节点(如果 \(c\mid\deg(u)\) 就不拆后面的) .
在满足度数限制的情况下,一条边端点可以连接任意一个拆出来的点,根据 Vizing 定理,我们显然可以构造出该图的一种 k 染色方案。
然后就没了 .
哦对答案是 \(\displaystyle\sum_{i=1}^{n+m}[c\nmid\deg(i)]\) .
现在真没了 .
魔怔愉悦之 Vizing 定理的更多相关文章
- 【学习笔记】Vizing 定理
图染色问题的经典结论 定义 称一个边染色方案合法当且仅当每个顶点连出的所有边的颜色都互不相同,如果此时出现了 \(k\) 个颜色那么称该方案是图的一组 \(k\) 染色 一张无向图的边着色数为最小的 ...
- 微信公众号支付开发全过程 --JAVA
按照惯例,开头总得写点感想 ------------------------------------------------------------------ 业务流程 这个微信官网说的还是很详细的 ...
- 【学习总结】Git学习-参考廖雪峰老师教程六-分支管理
学习总结之Git学习-总 目录: 一.Git简介 二.安装Git 三.创建版本库 四.时光机穿梭 五.远程仓库 六.分支管理 七.标签管理 八.使用GitHub 九.使用码云 十.自定义Git 期末总 ...
- for循环中嵌套setTimeout,执行顺序和结果该如何理解?
这两天在捣鼓作用域的问题,有的时候知识这个东西真的有点像是牵一发而动全身的感觉.在理解作用域的时候,又看到了一道经典的面试题和例子题. 那就是在for循环中嵌套setTimeout延时,想想之前面试的 ...
- zoj 2587 Unique Attack【最小割】
拆点拆魔怔了 直接按照原图建就行,这里有个小技巧就是双向边的话不用按着板子建(u,v,c)(v,u,0)(v,u,c)(u,v,0),直接建(u,v,c)(v,u,c)会快十倍!800ms->8 ...
- css或Angular框架限制文本字数
提需求的来了 某一期产品迭代时,新增了一个小功能,即:在单元格中的文本内容,字符超过20个字的时候,需要截断,并显示20个字符+一个省略号,未超过,无视. 这需求看上去不怎么复杂,看起来可以用css做 ...
- Java读源码之ReentrantLock
前言 ReentrantLock 可重入锁,应该是除了 synchronized 关键字外用的最多的线程同步手段了,虽然JVM维护者疯狂优化 synchronized 使其已经拥有了很好的性能.但 R ...
- 龙芯 loongnix20 rc2 初体验
2021-07-24 v0.0.1 版权声明:原创文章,未经博主允许不得转载 3A5000 昨天发布啦,历史上的昨天是中共一大的第一天. 3A5000 的团购还没开始(大概还是3999左右整机的样子) ...
- 2021.10.7考试总结[NOIP模拟71]
信心赛,但炸了.T3SB错直接炸飞,T4可以硬算的组合数非要分段打表求阶乘..T2也因为一个细节浪费了大量时间.. 会做难题很好,但首先还是要先把能拿的分都拿到. T1 签到题 结论:总可以做到对每个 ...
随机推荐
- kernel 劫持seq_operations && 利用pt_regs
kernel 劫持seq_operations && 利用pt_regs 劫持seq_operations进行栈迁移 seq_operations是一个大小为0x20的结构体,在打开/ ...
- 一文带你读懂 Hbase 的架构组成
hi,大家好,我是大D.今天咱们继续深挖一下 HBase 的架构组成. Hbase 作为 NoSQL 数据库的代表,属于三驾马车之一 BigTable 的对应实现,HBase 的出现很好地弥补了大数据 ...
- 通过Swagger接口导出模板文件时报错:URL.createObjectURL: Argument 1 is not valid for any of the 1-argument overloads.
问题描述:通过Swagger接口导出Excel模板文件时,报错:URL.createObjectURL: Argument 1 is not valid for any of the 1-argume ...
- 8.0 vue cli自定义页面
1.新建a.html(public文件夹下)文件,并设定div的id="a" <!DOCTYPE html> <html lang=""> ...
- 用Arduino显示颜色序列(u8g2,OLED)
目录 用Arduino显示颜色序列(u8g2,OLED) 用Arduino显示颜色序列(u8g2,OLED) 提前祝大家新年快乐! 主控:Arduino Mega 2560 硬件:126×64 OLE ...
- 架构师必备:HBase行键设计与应用
首先要回答一个问题,为何要使用HBase? 随着业务不断发展.数据量不断增大,MySQL数据库存在这些问题: MySQL支持的数据量为TB级,不能一直保留历史数据.而HBase支持的数据量为PB级,适 ...
- CSS 网页字体最佳实践
一般在网页的字体设置中,可以将字体分类三类: 系统字体:使用系统自带的字体 兜底字体:当系统字体无法正常使用,而兜底的字体 Emoji 字体:显示网页中的表情字体 为了满足不同平台,以及 Emoji ...
- 静态代理、动态代理与Mybatis的理解
静态代理.动态代理与Mybatis的理解 这里的代理与设计模式中的代理模式密切相关,代理模式的主要作用是为其他对象提供一种控制对这个对象的访问方法,即在一个对象不适合或者不能直接引用另一个对象时,代理 ...
- BUUCTF-qr
qr 签到题
- UiPath选择器之页面选择器的介绍和使用
一.页面选择器的介绍 某些软件程序的布局和属性节点具有易变的值,例如某些Web应用程序.UiPath Studio无法预测这些变化,因此,您可能必须手动生成一些选择器. 每个属性都有一个分配的值.选择 ...