王霸雄图荣华敝屣,谈笑间尽归尘土|基于Python3双队列数据结构搭建股票/外汇交易匹配撮合系统
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_192
如果你爱他,那么送他去股市,因为那里是天堂;如果你恨他,送他去股市,因为那里是地狱。
在过去的一年里,新冠疫情持续冲击世界经济,全球主要股票市场的波动都相对频繁,尤其是A股,正所谓:曾经跌停难为鬼,除非解套才做人;抄底时难抛亦难,反弹无力百花残。对于波谲云诡的股票市场,新投资人还是需要谨慎入场,本次我们来利用双队列的数据结构实现实时在线交易匹配引擎,探索股票交易的奥秘。
首先需要明确一点,证券交易和传统的B2C电商系统交易完全不同,证券交易系统提供的买卖标的物是标准的数字化资产,如美元、股票、比特币等等,它们的特点是数字计价,可分割买卖,也就是说,当我们发起买盘申请的时候,需要有价格对应的卖盘响应,才能真正完成交易,反之亦然。
具体逻辑是:所有买盘或者卖盘的订单队列都传递给匹配引擎,匹配引擎尝试将它们的价格进行匹配。该匹配队列分为买单(按价格升序排列,出价最高的优先交易)和卖单(按降序排列,卖价最低的优先交易)。如果股票订单找不到与匹配的价格,那么该订单就继续保存在订单队列中的原适当位置。
这里我们以实际的案例来看一下相关匹配算法的实现,假设我有两个订单队列,一个买盘,一个卖盘:
#买盘
价格 数量
100 50
100 10
90 5
88 3
#卖盘
价格 数量
170 50
180 40
199 10
200 5
最常见的匹配算法就是“价格/时间优先”队列。订单主要根据价格进行匹配,如果以相同的价格水平存在多个订单,则最早的订单将首先被匹配,这也和队列原理相同:先入先出。
如上所示,假设有两个订单紧挨着。第一个是以100块钱的价格买入50股的买入订单,第二个也是以相同价格买入10股的买入订单。鉴于订单与任何卖价都不匹配(由于其价格低于最低的卖价),所以它们都被放置在订单队列中。第一订单和第二订单以相同的价格水平存储,但是由于时间优先,前者比后者具有优先权。这基本上意味着,第一个订单将被放置在买入队列中的第二个订单的前面。
而卖盘同理,首先卖价最低的优先交易,如果卖价相同,则时间优先,先进队列的先交易,可是很多散户都遇见过一种情况,就是如果手里的一支股票连续跌停,就算拼命挂低价单也很难卖出去,甚至可能直接跌到退市血本无归,这是为什么呢?
因为当一只股票跌停时,也意味着有一大堆筹码堆积在跌停板上,想卖出去是不容易的,得排队,理论上按照“时间优先、价格优先”的交易原则排队成交,但跌停的情况下,只存在“时间优先”的考虑,也就是说,如果想在封死跌停板时把股票卖出去,就得尽早对该股票挂跌停板价格卖出。
可实际上,一只股票跌停,不光是小部分散户卖不出去,而是大多数散户都卖不出去,都在恐慌性出货,大家都在排队卖。更何况,股票买卖是通过券商进行的,而券商有VIP快速通道也不是什么秘密,一些大资金的大户、游资、机构享有券商优待,或通过租用通道实现对盘面的快速优先买卖,这也导致了在股票涨停板抢筹、跌停板出货时存在一定的“不公平”性,也就说,交易队列并非完全遵照“价格/时间”定序,还有可能出现优先级(加权)队列,所以,跌停时跑不了,涨停时买不进就不是什么新鲜事了。
另外,还需要注意匹配算法中的价格一直而数量匹配填充的问题,假设买单10块挂单50手,卖单10块挂单30手,则匹配的价格为10块钱,在买一卖一各显示30手,买单队列首位置就会有20手在排队,如下所示:
#买盘
价格 数量
10 50
#卖盘
价格 数量
10 30
11 50
经过匹配算法之后:
#买盘
价格 数量
10 20
#卖盘
价格 数量
11 50
OK,了解了基本概念,让我们用Python3具体实现,首先需要定义两个类,订单和交易,订单对象作为匹配算法之前的元素,而交易对象则是匹配之后的成交对象:
class Order:
def __init__(self, order_type, side, price, quantity):
self.type = order_type
self.side = side.lower()
self.price = price
self.quantity = quantity
class Trade:
def __init__(self, price, quantity):
self.price = price
self.quantity = quantity
这里type是订单类型,side代表买单或者卖单,price为价格,quantity为数量。
紧接着我们来实现订单队列:
class OrderBook:
def __init__(self, bids=[], asks=[]):
self.bids = sorted(bids, key = lambda order: -order.price)
self.asks = sorted(asks, key = lambda order: order.price)
def __len__(self):
return len(self.bids) + len(self.asks)
def add(self, order):
if order.type == 'buy':
self.bids.append(order)
elif order.type == 'sell':
self.asks.append(order)
def remove(self, order):
if order.type == 'buy':
self.bids.remove(order)
elif order.type == 'sell':
self.asks.remove(order)
这里的订单队列很容易地实现为具有两个排序列表的数据结构,其中两个列表包含两个按价格排序的订单实例。一种按升序排序(买单),另一种按降序排序(卖单)。
下面来实现系统的核心功能,匹配引擎:
from collections import deque
class MatchingEngine:
def __init__(self):
self.queue = deque()
self.orderbook = OrderBook()
self.trades = deque()
首先,我们需要两个FIFO队列;一个用于存储所有传入的订单,另一个用于存储经过匹配后所有产生的交易。我们还需要存储所有没有匹配的订单。
之后,通过调用.process(order)函数将订单传递给匹配引擎。然后将匹配生成的交易存储在队列中,然后可以依次检索(通过匹配引擎交易队列),也可以通过调用.get_trades()函数将其存储在列表中。
def process(self, order):
self.match(order)
def get_trades(self):
trades = list(self.trades)
return trades
随后就是匹配方法:
def match(self, order):
if order.side == 'buy':
filled = 0
consumed_asks = []
for i in range(len(self.orderbook.asks)):
ask = self.orderbook.asks[i]
if ask.price > order.price:
break # 卖价过高
elif filled == order.quantity:
break # 已经匹配
if filled + ask.quantity <= order.quantity:
filled += ask.quantity
trade = Trade(ask.price, ask.quantity)
self.trades.append(trade)
consumed_asks.append(ask)
elif filled + ask.quantity > order.quantity:
volume = order.quantity-filled
filled += volume
trade = Trade(ask.price, volume)
self.trades.append(trade)
ask.quantity -= volume
# 没匹配成功的
if filled < order.quantity:
self.orderbook.add(Order("limit", "buy", order.price, order.quantity-filled))
# 成功匹配的移出订单队列
for ask in consumed_asks:
self.orderbook.remove(ask)
elif order.side == 'sell':
filled = 0
consumed_bids = []
for i in range(len(self.orderbook.bids)):
bid = self.orderbook.bids[i]
if bid.price < order.price:
break
if filled == order.quantity:
break
if filled + bid.quantity <= order.quantity:
filled += bid.quantity
trade = Trade(bid.price, bid.quantity)
self.trades.append(trade)
consumed_bids.append(bid)
elif filled + bid.quantity > order.quantity:
volume = order.quantity-filled
filled += volume
trade = Trade(bid.price, volume)
self.trades.append(trade)
bid.quantity -= volume
if filled < order.quantity:
self.orderbook.add(Order("limit", "sell", order.price, order.quantity-filled))
for bid in consumed_bids:
self.orderbook.remove(bid)
else:
self.orderbook.add(order)
逻辑上并不复杂,基本上就是在订单队列中遍历,直到收到的订单被完全匹配为止。对于每个匹配成功的订单,都会创建一个交易对象并将其添加到交易队列中。如果匹配引擎无法完全完成匹配,则它将剩余量作为单独的订单再添加会订单队列中。
当然了,为了应对高并发场景,实现每秒成千上万的交易量,我们可以对匹配引擎进行改造,让它具备多任务异步执行的功能:
from threading import Thread
from collections import deque
class MatchingEngine:
def __init__(self, threaded=False):
self.queue = deque()
self.orderbook = OrderBook()
self.trades = deque()
self.threaded = threaded
if self.threaded:
self.thread = Thread(target=self.run)
self.thread.start()
改造线程方法:
def process(self, order):
if self.threaded:
self.queue.append(order)
else:
self.match(order)
最后,为了让匹配引擎能够以线程的方式进行循环匹配,添加启动入口:
def run(self):
while True:
if len(self.queue) > 0:
order = self.queue.popleft()
self.match(order)
print(self.get_trades())
print(len(self.orderbook))
大功告成,完整代码如下:
class Order:
def __init__(self, order_type, side, price, quantity):
self.type = order_type
self.side = side.lower()
self.price = price
self.quantity = quantity
class Trade:
def __init__(self, price, quantity):
self.price = price
self.quantity = quantity
class OrderBook:
def __init__(self, bids=[], asks=[]):
self.bids = sorted(bids, key = lambda order: -order.price)
self.asks = sorted(asks, key = lambda order: order.price)
def __len__(self):
return len(self.bids) + len(self.asks)
def add(self, order):
if order.type == 'buy':
self.bids.append(order)
elif order.type == 'sell':
self.asks.append(order)
def remove(self, order):
if order.type == 'buy':
self.bids.remove(order)
elif order.type == 'sell':
self.asks.remove(order)
from threading import Thread
from collections import deque
class MatchingEngine:
def __init__(self, threaded=False):
order1 = Order(order_type="buy",side="buy",price=10,quantity=10)
order2 = Order(order_type="sell",side="sell",price=10,quantity=20)
self.queue = deque()
self.orderbook = OrderBook()
self.orderbook.add(order1)
self.orderbook.add(order2)
self.queue.append(order1)
self.queue.append(order2)
self.trades = deque()
self.threaded = threaded
if self.threaded:
self.thread = Thread(target=self.run)
self.thread.start()
def run(self):
while True:
if len(self.queue) > 0:
order = self.queue.popleft()
self.match(order)
print(self.get_trades())
print(len(self.orderbook))
def process(self, order):
if self.threaded:
self.queue.append(order)
else:
self.match(order)
def get_trades(self):
trades = list(self.trades)
return trades
def match(self, order):
if order.side == 'buy':
filled = 0
consumed_asks = []
for i in range(len(self.orderbook.asks)):
ask = self.orderbook.asks[i]
if ask.price > order.price:
break # 卖价过高
elif filled == order.quantity:
break # 已经匹配
if filled + ask.quantity <= order.quantity:
filled += ask.quantity
trade = Trade(ask.price, ask.quantity)
self.trades.append(trade)
consumed_asks.append(ask)
elif filled + ask.quantity > order.quantity:
volume = order.quantity-filled
filled += volume
trade = Trade(ask.price, volume)
self.trades.append(trade)
ask.quantity -= volume
# 没匹配成功的
if filled < order.quantity:
self.orderbook.add(Order("limit", "buy", order.price, order.quantity-filled))
# 成功匹配的移出订单队列
for ask in consumed_asks:
self.orderbook.remove(ask)
elif order.side == 'sell':
filled = 0
consumed_bids = []
for i in range(len(self.orderbook.bids)):
bid = self.orderbook.bids[i]
if bid.price < order.price:
break
if filled == order.quantity:
break
if filled + bid.quantity <= order.quantity:
filled += bid.quantity
trade = Trade(bid.price, bid.quantity)
self.trades.append(trade)
consumed_bids.append(bid)
elif filled + bid.quantity > order.quantity:
volume = order.quantity-filled
filled += volume
trade = Trade(bid.price, volume)
self.trades.append(trade)
bid.quantity -= volume
if filled < order.quantity:
self.orderbook.add(Order("limit", "sell", order.price, order.quantity-filled))
for bid in consumed_bids:
self.orderbook.remove(bid)
else:
self.orderbook.add(order)
测试一下:
me = MatchingEngine(threaded=True)
me.run()
返回结果:
liuyue:mytornado liuyue$ python3 "/Users/liuyue/wodfan/work/mytornado/test_order_match.py"
[<__main__.Trade object at 0x102c71750>]
2
[<__main__.Trade object at 0x102c71750>, <__main__.Trade object at 0x102c71790>]
1
没有问题。
结语:所谓天下熙熙,皆为利来;天下攘攘,皆为利往。太史公这句名言揭示了股票市场的本质,人性的本能就是追求利益,追求利益却要在决对原则之下,但是资本市场往往是残酷的,王霸雄图,荣华敝屣,到最后,也不过是尽归尘土。
原文转载自「刘悦的技术博客」 https://v3u.cn/a_id_192
王霸雄图荣华敝屣,谈笑间尽归尘土|基于Python3双队列数据结构搭建股票/外汇交易匹配撮合系统的更多相关文章
- 『王霸之路』从0.1到2.0一文看尽TensorFlow奋斗史
0 序篇 2015年11月,Google正式发布了Tensorflow的白皮书并开源TensorFlow 0.1 版本. 2017年02月,Tensorflow正式发布了1.0.0版本,同时也标志 ...
- 统计Go, Go, Go
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 结束了概率论,我们数据之旅的下一站是统计.这一篇,是统计的一个小介绍. 统 ...
- java并发库 Lock 公平锁和非公平锁
jdk1.5并发包中ReentrantLock的创建可以指定构造函数的boolean类型来得到公平锁或非公平锁,关于两者区别,java并发编程实践里面有解释 公平锁: Threads acquir ...
- java多线程之:Java中的ReentrantLock和synchronized两种锁定机制的对比 (转载)
原文:http://www.ibm.com/developerworks/cn/java/j-jtp10264/index.html 多线程和并发性并不是什么新内容,但是 Java 语言设计中的创新之 ...
- Java 理论与实践: JDK 5.0 中更灵活、更具可伸缩性的锁定机制
新的锁定类提高了同步性 —— 但还不能现在就抛弃 synchronized JDK 5.0为开发人员开发高性能的并发应用程序提供了一些很有效的新选择.例如,java.util.concurrent.l ...
- Java中的ReentrantLock和synchronized两种锁机制的对比
原文:http://www.ibm.com/developerworks/cn/java/j-jtp10264/index.html 多线程和并发性并不是什么新内容,但是 Java 语言设计中的创新之 ...
- B站资源索引
自从搭建了B站的监控之后,就收集了一堆up主,下面分类整理一下,排名不分先后,内容会持续更新……2019-4-10 19:04:08 一.酷玩&装机&开箱 1.AS极客 2.Virtu ...
- Java中的ReentrantLock和synchronized两种锁定
原文:http://www.ibm.com/developerworks/cn/java/j-jtp10264/index.html 多线程和并发性并不是什么新内容,但是 Java 语言设计中的创新之 ...
- Java中的ReentrantLock和synchronized两种锁定机制
原文:http://www.ibm.com/developerworks/cn/java/j-jtp10264/index.html 多线程和并发性并不是什么新内容,但是 Java 语言设计中的创新之 ...
随机推荐
- 每天一个 HTTP 状态码 203
203 Non-Authoritative Information 203 Non-Authoritative Information 'Non-Authoritative Informative' ...
- Pandas 分组聚合 :分组、分组对象操作
1.概述 1.1 group语法 df.groupby(self, by=None, axis=0, level=None, as_index: bool=True, sort: bool=True, ...
- 【原创】项目四Tr0ll-1
实战流程 1.nmap枚举 nmap -sP 192.168.186.0/24 nmap -p- 192.168.186.142 nmap 192.168.186.142 -p- -sS -sV -A ...
- 开源的.Net 工作流引擎Elsa初试——创建工作流服务器和图形化工作流配置管理应用
微软的Workflow Foundation基于.Net Framework,并且没有向.Net Core迁移的计划.我们的很多项目使用了工作流引擎,这些项目向.Net Core以及更高版本迁移时遇到 ...
- torch.nn.MSELoss()函数解读
转载自:https://www.cnblogs.com/tingtin/p/13902325.html
- NB-IoT/LoRa/eMTC和蓝牙/WiFi的关系是互补还是替代?
近年来,相继出现了许多物联网技术.WiFi.蓝牙.NB-IoT.LoRa.eMTC和其他技术为IoT实践提供了一流的技术支持通讯端口.拥有这么多技术,能够互相替代吗?还是能起到互补的作用?为低功耗广域 ...
- 牛亚男:基于多Domain多任务学习框架和Transformer,搭建快精排模型
导读: 本文主要介绍了快手的精排模型实践,包括快手的推荐系统,以及结合快手业务展开的各种模型实战和探索,全文围绕以下几大方面展开: 快手推荐系统 CTR模型--PPNet 多domain多任务学习框架 ...
- VR技术赋能五大领域,不止高级,更高效!
除了VR游戏.VR影视作品,究竟还有哪些产业领域会应用到VR技术并为生活带来改变呢?今天就帮大家好好梳理一下~ VR赋能交通,不只是高级 最近在网上看到了VR考驾照的新闻,网友都赞叹,现在学车都这么高 ...
- cut命令、case与select语句
cut命令 常用参数: -c character 字符 -d delimiter 分隔符 -f field 域(列) --output-delimiter 输出分隔符 例: # echo 12345 ...
- 一次 Keepalived 高可用的事故,让我重学了一遍它!
原文首发: 你好,我是悟空. 前言 上次我们遇到了一个 MySQL 故障的事故,这次我又遇到了另外一个奇葩的问题: Keepalived 高可用组件的虚拟 IP 持续漂移,导致 MySQL 主从不断切 ...