介绍

今天主要分享一下 kafka 的 rebalance,在 kafka 中,rebalance 是一个十分重要的概念,很多时候引发的一些问题可能都是由于 rebalance 引起的,rebalance 也就是再均衡,顾名思义,再均衡就是再次负载均衡,下面会对再均衡进行一个详细的描述。

负载均衡

说再均衡之前,先说一说负载均衡,负载均衡就是将请求分发到不同的操作单元上,我们通俗一点来说,就是将请求分发到不同的服务器上,以减轻单台服务器的压力,提高吞吐量,负载均衡的方式有很多,下面是 nginx 的负载均衡,当客户端请求到 nginx 时,nginx 根据一定的负载均衡算法将请求转发到不同的服务器。

请求应该落到那一台机器上,这取决于我们使用的负载均衡策略,负载均衡策略有很多,比如随机,轮询,LFU,LRU 等等,这取决于我们的选择。

rebalance图示

上面说了负载均衡,其实再均衡也是一样,再 kafka 中,一个消费者群组怎么去消费一个主题下面的分区,该以什么方式去消费这些分区,是我们值得去考虑的,kafka 提供了一个分区分配器,他能协调哪些消费者应该去消费那些分区。

如下图所示,一个消费者群组中有两个消费者,他们各自消费两个分区。

此时加入一个消费者,那么就触发了再均衡操作,kafka 就会重新进行分配,分配后的样子可能是下面的这样,c2 从原来的消费两个分区 partition-3,partition-4 变为只消费 partition-2,partition-4 让 c3 去消费。

从上面我们看出,kafka 的再均衡其实就是协调消费者和分区的消费对应关系,我们一般是希望消费者和分区之间的消费关系尽量做到平衡,别出现某个消费者的负载很高,某个消费者的负载很低,资源不能进行合理的利用。

再均衡产生的条件

再均衡产生的条件就是有消费者加入或者退出,加入和退出的方式有很多,有一些是主动因素,有一些是被动因素,比如我们主动增加一个消费者,这时候就会发生再均衡,我们停掉一个消费者,那么这时候也发生再均衡,还有当消费者和 broker 之间由于长时间没有心跳,那么消费者就被提出,这时候也会发生再均衡,某个主题下的分区数量发生变化,也会发生再均衡,还有其他的一些因素,就不展开了,不过我们应该尽量避免再均衡

再均衡期间消费者是读取不了任何消息,因为这段时间会对分区进行重新分配,所以
之前消费者与分区之间的对应关系已经不存在,需要进行重新分配,所以会出现短暂不可用现象。

主动因素导致消费者的加入和离开是无法避免的,当数据量比较大时,可能需要增加消费者来分担压力,提高吞吐量,所以这时候就需要人为去添加消费者了,这时候发生再均衡是可预见的,但是被动导致再均衡就不可预见了,下面我们从一些参数和原理来说明一下,尽量避免再均衡。

相关参数

在 kafka 中,分区的分配和分区分配器PartitionAssignor有关,在底层实现中,是通过协调器Coordinator来协调消费者和分区的,分为消费者端的消费者协调器ConsumerCoordinator和 Broker 端的组协调器GroupCoordinator

Broker 端参数

  • group.max.session.timeout.ms:消费者会话的最大超时时间。如果消费者在这个时间内没有发送心跳 GroupCoordinator,那么它会被认为已经失效,会被踢出消费组。

  • group.min.session.timeout.ms:消费者会话的最小超时时间。如果消费者在这个时间内没有发送心跳 GroupCoordinator,那么它会被认为已经失效,会被踢出消费组。

  • group.initial.rebalance.delay.ms:消费者组启动时,等待多长时间再进行 rebalance。这个参数可以让消费者有时间加入消费者组。

consumer 端参数

  • session.timeout.ms:消费者会话的超时时间。如果一个消费者在这个时间内没有发送心跳到组协调器 GroupCoordinator,那么被认为它已经失效了,就会将其踢出消费者组。如果这个值设置过小,那么就会比较消耗资源,但是能够快速的发现 ConsumerCoordinator 是否还“存活”,然后进行 rebalance,如果设置过大,那么就会导致长时间没有收到心跳,可能 ConsumerCoordinator 已经“挂了”一段时间,没有及时进行 rebalance。

  • heartbeat.interval.ms:消费者发送心跳的时间间隔。心跳是消费者与 GroupCoordinator 之间维持会话的机制,如果一个消费者在这个时间间隔内没有发送心跳,那么 GroupCoordinator 认为它已经失效,然后将其踢出,如果这个值设置过大,那么一个消费者失效时,可能需要等待很长时间才能触发 rebalance,如果过小那么就会比较消耗资源。

  • max.poll.interval.ms:消费者处理消息的最大时间间隔。如果消费者在这个时间内没有消费完消息导致不能 poll 消息,那么它将被认为已经失效,将被踢出消费者组,这个值默认为 5 分钟。

heartbeat.interval.ms 的值一定要比 session.timeout.ms 小,官网建议是 1/3,比如 heartbeat.interval.ms 为 5s,那么 session.timeout.ms 为 15s,这样的话在这个时间会话内能收到三次心跳,不过这两个的值也要在 Broker 端 group.max.session.timeout.ms(5min)和 group.min.session.timeout.ms(6s)的区间之间。

分配器

消费者和分区之间进行分配是由分配器来完成的,当消费者加入和离开时触发 reabalance,然后会使用分配器从新对分区和消费者进行分配,kafka 有一个分配器接口ConsumerPartitionAssignor,它的下面有一个抽象类AbstractPartitionAssignor,如果我们需要自定义分配器,那么集成抽象类AbstractPartitionAssignor即可,kafka 默认提供了好几种分配器,如 RoundRobinAssignor,RangeAssignor,StickyAssignor,CooperativeStickyAssignor,kafka 默认使用 RangeAssignor。

如下,我创建了一个名称为 musk 的主题,分区数为 4,然后创建一个消费者,那么这时因为只有一个消费者,所以四个分区都划给了它。

此时我又加入一个消费者,因为加入消费者后会触发 rebalance,所以这时候就会对分区重新进行分配,分配后如下,每个消费者划分了两个分区。

对于分配器,kafka 自带的已经能够满足我们大多时候的需求,因为我们在使用多个消费者的时候,其实就是为了让分区被均分给消费组内的消费者,以达到压力的分担。

总结

从上面我们对 rebalance 进行一些介绍,对 rebalance 产生的原因进行说明,对消费者协调器和组协调器进行了解,对一些参数进行详解,还有通过测试 rebalance 来更加直观说明 rebalance,rebalance 的触发有很多方式,不过我们应该尽量去避免它的发生,对于分区的修改,应该尽量在一开始规划好,不要后续去修改分区,对于其他引起 rebalance 的因素,也应该将其概率降到最低。

今天的分享就到这里,感谢你的观看,我们下期见,如果文中有说得不合理或者不正确的地方,希望你能进行指点

kafka rebalance你真的了解吗的更多相关文章

  1. kafka rebalance解决方案 -incremental cooperative协议和static membership功能

    apache kafka的重平衡(rebalance),一直以来都为人诟病.因为重平衡过程会触发stop-the-world(STW),此时对应topic的资源都会处于不可用的状态.小规模的集群还好, ...

  2. 什么是 Kafka Rebalance 以及关于 Rebalance Kafka-Python 社区客户端应该关注的地方

    什么是 Rebalance? Rebalance 为什么会发生?Rebalance 的情况下 consumer 是否还能正确消费消息呢? 记得之前在一段时间密集面试的时候总会问候选人这些问题. 重平衡 ...

  3. kafka rebalance 部分分区没有owner

    转发请注明原创地址http://www.cnblogs.com/dongxiao-yang/p/6234673.html 最近业务同学反馈kafka上线的时候某个topic的部分分区一直没有owner ...

  4. Kafka Rebalance机制分析

    什么是 Rebalance Rebalance 本质上是一种协议,规定了一个 Consumer Group 下的所有 consumer 如何达成一致,来分配订阅 Topic 的每个分区. 例如:某 G ...

  5. Kafka Rebalance机制和选举策略总结

    自建博客地址:https://www.bytelife.net,欢迎访问! 本文为博客同步发表文章,为了更好的阅读体验,建议您移步至我的博客 本文作者: Jeffrey 本文链接: https://w ...

  6. Kafka 的这些原理你知道吗

    如果只是为了开发 Kafka 应用程序,或者只是在生产环境使用 Kafka,那么了解 Kafka 的内部工作原理不是必须的.不过,了解 Kafka 的内部工作原理有助于理解 Kafka 的行为,也利用 ...

  7. Kafka 【的这些原理你知道吗】

    如果只是为了开发 Kafka 应用程序,或者只是在生产环境使用 Kafka,那么了解 Kafka 的内部工作原理不是必须的.不过,了解 Kafka 的内部工作原理有助于理解 Kafka 的行为,也利用 ...

  8. Kafka 的这些原理你懂吗

    如果只是为了开发 Kafka 应用程序,或者只是在生产环境使用 Kafka,那么了解 Kafka 的内部工作原理不是必须的.不过,了解 Kafka 的内部工作原理有助于理解 Kafka 的行为,也利用 ...

  9. Kafka基本原理

    简介 Apache Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apache项目的一部分.Kafka是一种快速.可扩展的.设计内在就是分布式的,分区的和可复制的提交 ...

  10. Storm 对 0.10.x 版 Kafka之commit offsets

    由于 0.10.x 版 Kafka 与 0.8.x 版有很大的变化,这种变化对下游 Storm 有非常大的影响,0.10.x 版的 Kafka 不但增加了权限管理的功能,而且还将 simple 和 h ...

随机推荐

  1. JS实现异步的方法:回调函数callback、事件监听、setTimeout、Promise、生成器Generators/yield、async/awt

    所有异步任务都是在同步任务执行结束之后,从任务队列中依次取出执行. 回调函数是异步操作最基本的方法,比如AJAX回调,回调函数的优点是简单.容易理解和实现,缺点是不利于代码的阅读和维护,各个部分之间高 ...

  2. SOC平台,网络安全管理平台

    SOC平台,网络安全管理平台 提供集中.统一.可视化的安全信息管理,通过实时采集各种安全信息,动态进行安全信息关联分析与风险评估,实现安全事件的快速跟踪.定位和应急响应. 从监控.审计.风险和运维四个 ...

  3. Java Collection体系

    Collection 接口 宏观图 快速使用 import java.util.*; public class Demo { public static void main(String[] args ...

  4. 创建一个HashMap实例,该实例具有足够高的“初始容量”

    创建一个HashMap实例,该实例具有足够高的"初始容量" /** * 创建一个{@link HashMap}实例,该实例具有足够高的"初始容量" * * @p ...

  5. vue 添加多条数据 添加日期

    效果图添加多条数据,日期是具体到天. 后端数据格式time:[ { s_time:' ' , e_time: ' ' }] <p v-for="(item,index) in form ...

  6. Java基础面试笔试大汇总

    1面向对象的特征有哪些方面? 抽象:抽象是将一类对象的共同特征总结出来构造类的过程,包括数据抽象和行为抽象. 继承:继承就是从已有的类得到继承信息创建新类的过程 封装:封装就是把数据和操作数据的方法绑 ...

  7. char和int的类型转换

    char类型是16位的,底层采用unicode编码保存.char类型是可以直接赋值给int类型的,因为是16位到32位低到高.举个例子比如int i='1';打印i的值是49.char类型跟int类型 ...

  8. redis部署集群时出现的问题(redis 版本 6.2.5)

    配置 redis 集群时(redis 版本 6.2.5),我使用了同一个 server 端运行3个不同的配置文件. 配置文件中只修改了端口号并打开了 cluster-enable. 脚本运行后什么提示 ...

  9. == 和 equal 的区别

    == 比较的是两个对象的索引是否相同: equal 比较的是两个对象内容是否相同: int a = 1;long b = 1L;a==b? 答案是 对:因为a和b指向的索引地址相同. 再例如 Stri ...

  10. conda相关的设置备忘

    因为默认channel已经没有3.4.4(最后一个支持xp的python3)了,为了添加这个的版本,尝试先用conda-forge channel: conda create -n myenv pyt ...