大规模人脸分类—allgather操作(2)
腾讯开源人脸识别训练代码TFace 中关于all_gather层的实现如下。接下来解释为什么backward要进行reduce相加操作。
https://github.com/Tencent/TFace
class AllGatherFunc(Function):
""" AllGather op with gradient backword
"""
@staticmethod
def forward(ctx, tensor, *gather_list):
gather_list = list(gather_list)
dist.all_gather(gather_list, tensor)
return tuple(gather_list)
@staticmethod
def backward(ctx, *grads):
grad_list = list(grads)
rank = dist.get_rank()
grad_out = grad_list[rank]
dist_ops = [
dist.reduce(grad_out, rank, ReduceOp.SUM, async_op=True) if i == rank else
dist.reduce(grad_list[i], i, ReduceOp.SUM, async_op=True) for i in range(dist.get_world_size())
]
for _op in dist_ops:
_op.wait()
grad_out *= len(grad_list) # cooperate with distributed loss function
return (grad_out, *[None for _ in range(len(grad_list))])
AllGather = AllGatherFunc.apply
下面用示意图来描述大规模人脸分类的过程,如下图。
结合下面示意图和公式表达来理解。
B: batch size, d: feature dimension, K: gpu number, C: class number, \(c_j\): class number of j-th gpu
(1)\(F_j \in R^{B*d}\): 第j块GPU上特征
(2)\(F_{total} = torch.cat((F_0, F_1, ^, F_{K-1} )) \in R^{KB*d}\): 表示所有的K个GPU上特征合并在一起
(3)\(W_j \in R^{d*c_j}\):第j块GPU上的分类权重
(4)\(logit_j=F_{total}W_j \in R^{KB*c_j}\): 这里简化分类层为常规线性变换。(下面的公式中\(y_j\)就表示\(logit_j\))
\(\frac {\partial L_j}{\partial F_{total}} = \frac{\partial L_j}{\partial y_j}* \frac{\partial y_j}{\partial F_{total}}=\frac{\partial L_j}{\partial y_j}*W_j^T\),(\(R^{KB*c_j}*R^{c_j*d}=R^{KB*d}\),数据维度是可以对应上的)。
可以看出每块GPU上产生的对全体特征向量的梯度维度都是一样(这个是肯定的),每块GPU上产生梯度是通过上述链式法则得到的,得到梯度的公式中,分两个部分相乘,一个是对logit值的导数,一个是当前卡上局部分类权重W的导数。对于每块卡而言这两部分都不一样。也就是每块gpu都对全体特征向量\(F_{total}\)都产生梯度。总的loss是各个GPU上loss先求和再归约,因此在求对logit梯度时,也除以了总的样本数量(KB),然后对全体特征向量\(F_{total}\)在allgather层要进行相加。\(\frac{\partial L}{\partial F_{total}}=\frac{1}{KB}\sum _{j=0}^{j=K-1}\frac {\partial L_j}{\partial F_{total}} =\frac{1}{KB}\sum _{j=0}^{j=K-1}\frac{\partial L_j}{\partial y_j}*W_j^T=\sum _{j=0}^{j=K-1}\frac{1}{KB}\frac{\partial L_j}{\partial y_j}*W_j^T\)。
可是不明白上述代码为什么要乘以GPU的数量,对应代码为:grad_out *= len(grad_list) 。

大规模人脸分类—allgather操作(2)的更多相关文章
- 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践
https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类 ...
- [转] 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践
转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文 ...
- 用keras的cnn做人脸分类
keras介绍 Keras是一个简约,高度模块化的神经网络库.采用Python / Theano开发. 使用Keras如果你需要一个深度学习库: 可以很容易和快速实现原型(通过总模块化,极简主义,和可 ...
- wordpress搜索结果排除某个分类如何操作
我们知道wordpress的搜索结果页search.php和分类页category.php是一样的,但是客户的网站是功能比较多的系统,有新闻又有产品,如果搜索结果只想展示产品要如何操作呢?随ytkah ...
- SQL分类-DDL_操作数据库_创建&查询
SQL分类 1.DDL(Data Definition Language)数据定义语言 用来定义数据库对象:数据库,表,列等.关键字:create , drop, alter 等 2.DML(Data ...
- python集合的分类与操作
如图: 集合的炒作分类: 确定大小 测试项的成员关系 遍历集合 获取一个字符串表示 测试相等性 连接两个集合 转换为另一种类型的集合 插入一项 删除一项 替换一项 访问或获取一项
- Python函数分类及操作
为什么使用函数? 答:函数的返回值可以确切知道整个函数执行的结果 函数的定义:1.数学意义的函数:两个变量:自变量x和因变量y,二者的关系 2.Pytho ...
- .NET做人脸识别并分类
.NET做人脸识别并分类 在游乐场.玻璃天桥.滑雪场等娱乐场所,经常能看到有摄影师在拍照片,令这些经营者发愁的一件事就是照片太多了,客户在成千上万张照片中找到自己可不是件容易的事.在一次游玩等活动或家 ...
- face recognition[翻译][深度学习理解人脸]
本文译自<Deep learning for understanding faces: Machines may be just as good, or better, than humans& ...
- face recognition[翻译][深度人脸识别:综述]
这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领 ...
随机推荐
- 浅谈flume
flume做日志收集的工具,将数据源导入到指定目标中.flume之间可以相互连接组件 source:如何从数据源中取数据,可以认为是两种主动source(主动取数据)和被动source(推给so ...
- nginx 使用ssl证书配置https协议
如果能给你带来帮助,不胜荣幸,如果有错误也请批评指正,共同学习,共同进步. 第一,需要去申请或者购买ssl证书(这步略过,因为开发过程中没有给我提供证书和域名,只有ip地址),我从网上找了一份如何申请 ...
- 配置隐藏index.php
.htaccess文件写入类容放到跟目录下就OK <IfModule mod_rewrite.c> Options +FollowSymlinks -Multiviews RewriteE ...
- junit使用进阶
一.模拟http请求测试接口 新建一个controller @RestController public class AATestController { @GetMapping("/tes ...
- mac 暗黑破坏神2
https://590m.com/f/28636472-500475496-61a14b (访问密码:7410) 此版本可以更改人员属性参数,过程有点复杂,如需了解,请留言+v沟通吧... 编辑 ...
- C#连Mysql数据库报错 SSL Connection error
MySql.Data.MySqlClient.MySqlException (0x80004005): SSL Connection error. ---> System.AggregateEx ...
- C# 生成二维码方法(QRCoder)
前言 二维码很多地方都有使用到.如果是静态的二维码还是比较好处理的,通过在线工具就可以直接生成一张二维码图片,比如:草料二维码. 但有的时候是需要动态生成的(根据动态数据生成),这个使用在线就工具就无 ...
- 南大ics-pa/PA1.1过程及感想
1.1 一.在红白模拟器上运行超级马里奥游戏 1.将游戏rom文件mario.nes移至~/ics2022/fceux-am/nes/rom文件下,并回到~/ics2022/fceux-am下执行ma ...
- Java学习笔记-11
StringBuffer:是字符串缓冲区,是一个容器.长度是固定的,可以直接添加多个数据类型.最终回通过toString方法变成字符串. 容器具备的特点:存储,删除,获取,修改 存储操作: Strin ...
- 梦想Android版CAD控件(安卓CAD二次开发,安卓CAD控件)2023.02.26更新
下载地址:https://www.mxdraw.com/ndetail_40240.html1. 增加willBeReturnStart事件2. 增加使用OpenGL缓存3. 优化界面响应时间4. 修 ...