腾讯开源人脸识别训练代码TFace 中关于all_gather层的实现如下。接下来解释为什么backward要进行reduce相加操作。

https://github.com/Tencent/TFace

class AllGatherFunc(Function):
""" AllGather op with gradient backword
"""
@staticmethod
def forward(ctx, tensor, *gather_list):
gather_list = list(gather_list)
dist.all_gather(gather_list, tensor)
return tuple(gather_list) @staticmethod
def backward(ctx, *grads):
grad_list = list(grads)
rank = dist.get_rank()
grad_out = grad_list[rank]
dist_ops = [
dist.reduce(grad_out, rank, ReduceOp.SUM, async_op=True) if i == rank else
dist.reduce(grad_list[i], i, ReduceOp.SUM, async_op=True) for i in range(dist.get_world_size())
]
for _op in dist_ops:
_op.wait()
grad_out *= len(grad_list) # cooperate with distributed loss function
return (grad_out, *[None for _ in range(len(grad_list))])
AllGather = AllGatherFunc.apply

下面用示意图来描述大规模人脸分类的过程,如下图。

结合下面示意图和公式表达来理解。

B: batch size, d: feature dimension, K: gpu number, C: class number, \(c_j\): class number of j-th gpu

(1)\(F_j \in R^{B*d}\): 第j块GPU上特征

(2)\(F_{total} = torch.cat((F_0, F_1, ^, F_{K-1} )) \in R^{KB*d}\): 表示所有的K个GPU上特征合并在一起

(3)\(W_j \in R^{d*c_j}\):第j块GPU上的分类权重

(4)\(logit_j=F_{total}W_j \in R^{KB*c_j}\): 这里简化分类层为常规线性变换。(下面的公式中\(y_j\)就表示\(logit_j\))

\(\frac {\partial L_j}{\partial F_{total}} = \frac{\partial L_j}{\partial y_j}* \frac{\partial y_j}{\partial F_{total}}=\frac{\partial L_j}{\partial y_j}*W_j^T\),(\(R^{KB*c_j}*R^{c_j*d}=R^{KB*d}\),数据维度是可以对应上的)。

  可以看出每块GPU上产生的对全体特征向量的梯度维度都是一样(这个是肯定的),每块GPU上产生梯度是通过上述链式法则得到的,得到梯度的公式中,分两个部分相乘,一个是对logit值的导数,一个是当前卡上局部分类权重W的导数。对于每块卡而言这两部分都不一样。也就是每块gpu都对全体特征向量\(F_{total}\)都产生梯度。总的loss是各个GPU上loss先求和再归约,因此在求对logit梯度时,也除以了总的样本数量(KB),然后对全体特征向量\(F_{total}\)在allgather层要进行相加。\(\frac{\partial L}{\partial F_{total}}=\frac{1}{KB}\sum _{j=0}^{j=K-1}\frac {\partial L_j}{\partial F_{total}} =\frac{1}{KB}\sum _{j=0}^{j=K-1}\frac{\partial L_j}{\partial y_j}*W_j^T=\sum _{j=0}^{j=K-1}\frac{1}{KB}\frac{\partial L_j}{\partial y_j}*W_j^T\)。

 可是不明白上述代码为什么要乘以GPU的数量,对应代码为:grad_out *= len(grad_list)

大规模人脸分类—allgather操作(2)的更多相关文章

  1. 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践

    https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类 ...

  2. [转] 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践

    转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文 ...

  3. 用keras的cnn做人脸分类

    keras介绍 Keras是一个简约,高度模块化的神经网络库.采用Python / Theano开发. 使用Keras如果你需要一个深度学习库: 可以很容易和快速实现原型(通过总模块化,极简主义,和可 ...

  4. wordpress搜索结果排除某个分类如何操作

    我们知道wordpress的搜索结果页search.php和分类页category.php是一样的,但是客户的网站是功能比较多的系统,有新闻又有产品,如果搜索结果只想展示产品要如何操作呢?随ytkah ...

  5. SQL分类-DDL_操作数据库_创建&查询

    SQL分类 1.DDL(Data Definition Language)数据定义语言 用来定义数据库对象:数据库,表,列等.关键字:create , drop, alter 等 2.DML(Data ...

  6. python集合的分类与操作

    如图: 集合的炒作分类: 确定大小 测试项的成员关系 遍历集合 获取一个字符串表示 测试相等性 连接两个集合 转换为另一种类型的集合 插入一项 删除一项 替换一项 访问或获取一项

  7. Python函数分类及操作

    为什么使用函数? 答:函数的返回值可以确切知道整个函数执行的结果   函数的定义:1.数学意义的函数:两个变量:自变量x和因变量y,二者的关系                      2.Pytho ...

  8. .NET做人脸识别并分类

    .NET做人脸识别并分类 在游乐场.玻璃天桥.滑雪场等娱乐场所,经常能看到有摄影师在拍照片,令这些经营者发愁的一件事就是照片太多了,客户在成千上万张照片中找到自己可不是件容易的事.在一次游玩等活动或家 ...

  9. face recognition[翻译][深度学习理解人脸]

    本文译自<Deep learning for understanding faces: Machines may be just as good, or better, than humans& ...

  10. face recognition[翻译][深度人脸识别:综述]

    这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领 ...

随机推荐

  1. Mac技术服务, 感谢 点赞打赏

    ​ 首先,非常感谢大家对我的支持和鼓励. 如果需要单独解决Mac问题,您也可以选择付费服务,感谢大家的理解与支持! * 普通问题/软件安装:10元--100元每个(根据具体问题由您而定): * 普通问 ...

  2. Appium+RobotFrameWork测试环境搭建

    前提:搭建好robotframework环境 RF基于python2.7的版本实现的一套开源自动化测试框架 推荐使用Appium Desktop, 搭建Appium环境: 1. 搭建JDK 2. 搭建 ...

  3. 题解[CF575E]Spectator_Riots

    题意 一个球场,可以看作 \(10^5\times10^5\) 的矩形,每个位置都是一个整点.一个位置 \((x,y)\) 位于球场内当且仅当 \(x\in[0,10^5]\and y\in[0,10 ...

  4. tensorrt cuda cudnn 各版本的匹配要求

    https://docs.nvidia.com/deeplearning/tensorrt/release-notes/tensorrt-8.html#rel_8-0-3

  5. 导出PDF 空白赋值备份

    后台代码 //出货清单 @RequestMapping(params="getBusinessOutDetail") public void getBusinessOutDetai ...

  6. CentOS 7 忘记root密码的解决方法

    这是自己忘记密码root密码第二次了,可以再一再二但是不能再三.因此在此记录在网上找的 如何更换root密码的方法. (这篇文章是参考https://blog.csdn.net/q290994/art ...

  7. 微信小程序 switch

    微信小程序 switch 组件 的大小调整方法: 加上 zoom:数值   ==>数值在0到1之间

  8. 使用layui+jQuery实现点击删除单行数据

    使用layui+jQuery实现点击删除单行数据 首先要用到layui的官网手册 地址:https://www.layui.com/ 注意1.  此功能是在使用layui展示数据的基础上实现 3.  ...

  9. 关于protobuf报错'tr1/unordered_map' file not found

    这个问题的话,查了很多资料,总的来说就是C++版本的问题,新版本的namespace结构变化了,C++库的层级结构变化了 1.config.h HASH_MAP_H    HASH_SET_H 新版本 ...

  10. docker 实现原理

    实现原理 docker虚拟化 的核心是需要解决两个问题,资源隔离与资源限制 虚拟机是通过硬件虚拟化技术,通过一个 hypervisor 层实现对资源的彻底隔离 容器则是通过操作系统级别的虚拟化技术,利 ...