Codeforces Global Round 17

A. Anti Light's Cell Guessing

坑点:\(n=1,m=1\) 时答案为 \(0\) 。

其他情况:当 \(n=1\) 或 \(m=1\) 时,只需要取端点即可。其他情况只需要两个点,也是取两个端点,把离一个点曼哈顿距离为固定值的点连成一条线段,可以发现这两个端点形成的线段只可能有一个交点,即隐藏点。

#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
using namespace std;
using ll = long long; constexpr int N = 2e5+5, P = 1e9+7; int main() {
cin.tie(nullptr)->ios::sync_with_stdio(false);
int _; cin>>_;
while (_--) {
ll n,m; cin>>n>>m;
if(n==1&&m==1)cout<<0<<endl;
else if(n==1||m==1)cout<<1<<endl;
else {
cout<<2<<endl;
}
}
return 0;
}

B. Kalindrome Array

和之前cf出过的一题一模一样,那题是删字母,这题是删数字,不过都一样,因为可能删的值只可能有两个,枚举这两个可能值即可。

#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
using namespace std;
using ll = long long; constexpr int N = 2e5+5, P = 1e9+7;
int a[N]; int main() {
cin.tie(nullptr)->ios::sync_with_stdio(false);
int _; cin>>_;
while (_--) {
int n; cin>>n;
rep(i,0,n)cin>>a[i];
int lx=-1,ly=-1;
int l=0,r=n-1;
while(l<r){
if(a[l]!=a[r]){
if(lx==-1){
lx=a[l]; ly=a[r];
break;
}
}else{
l++,r--;
}
}
l=0,r=n-1;
int flag=1;
while(l<r){
if(a[l]!=a[r]){
if(a[l]==lx){
while(l<r&&a[l]==lx)l++;
}else if(a[r]==lx){
while(l<r&&a[r]==lx)r--;
}else{
flag=0;
break;
}
if(a[l]!=a[r]){
flag=0;
break;
}
}else{
l++,r--;
}
}
if(flag){
cout<<"yes\n";
continue;
}
l=0,r=n-1;flag=1;
while(l<r){
if(a[l]!=a[r]){
if(a[l]==ly){
while(l<r&&a[l]==ly)l++;
}else if(a[r]==ly){
while(l<r&&a[r]==ly)r--;
}else{
flag=0;
break;
}
if(a[l]!=a[r]){
flag=0;
break;
}
}else{
l++,r--;
}
}
if(!flag){
cout<<"no\n";
}else{
cout<<"yes\n";
}
}
return 0;
}

C. Keshi Is Throwing a Party

由于答案具有单调性,考虑二分答案。于是问题就转化成了从 \(n\) 个人里选 \(k\) 个人,使他们都开心。

假设选了 \(k\) 个人的下标分别为 \(p_1,p_2,\cdots,p_k\) 。对于 \(i\in[1,k]\) ,都有

\[b_{p_i}\ge i-1\\
a_{p_i}\ge k-i
\]

根据这个性质,我们就可以贪心地取了。

#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
using namespace std;
using ll = long long; constexpr int N = 2e5+5, P = 1e9+7;
int r[N], p[N], n; int check(int x) {
int ans=0,cc=0;
rep(i,0,n){
if(cc+1>=x-r[i]&&cc+1<=p[i]+1)cc++;
}
return cc>=x;
} int main() {
cin.tie(nullptr)->ios::sync_with_stdio(false);
int _; cin>>_;
while (_--) {
cin>>n;
rep(i,0,n)cin>>r[i]>>p[i];
int l=1,r=n;
while(l<r){
int mid=l+r+1>>1;
if(check(mid))l=mid;
else r=mid-1;
}
cout<<l<<endl;
}
return 0;
}

D. Not Quite Lee

一个数 \(x\) 形成的连续数字的和可以表示为

\[\frac{x(x+1)}{2}+kx(k\in \text{Z})
\]

于是一个数列 \((x_1,x_2,\cdots,x_k)\) 的合法性可以表示为

\[\sum_{i=1}^k(\frac{x_i(x_i+1)}{2}+k_ix_i)=0 \ (k_i\in \text{Z})
\]

移项得

\[\sum_{i=1}^k\frac{x_i(x_i+1)}{2}=\sum_{i=1}^kk_ix_i \ (k_i\in \text{Z})
\]

为表示简略,以下的幂次都是指 \(2\) 的幂次。

当数列中有一个为奇数时,右边的最低幂次为 \(0\) ,最低幂次为 \(0\) 的数可以表示任何数,也就是说,当数列中有一个为奇数,该数列即合法。于是考虑数列中全为偶数的情况,等式右边的最低幂次一定比左边的最低幂次大 \(1\) 。因为 \(x\) 是偶数,\(x+1\) 是奇数,乘起来再除个 \(2\) 必定会丢失一个因子 \(2\) 。低幂次的可以表示高幂次的,高幂次的不能表示低幂次,而左边的最低幂次要比右边小,所以要保证数列中幂次为最低幂次的数有偶数个,才能使他们的最低幂次 \(+1\) ,从而被右边的表示出来。于是思路就显而易见了,枚举最低幂次,若这个幂次不为 \(0\) ,那只能挑偶数个,否则都可以选。

从 \(n\) 个数中挑偶数个数(不能不挑)的方案数为

\[\binom{2}{n}+\binom{4}{n}+\cdots+\binom{\lfloor\frac{n}{2}\rfloor \times2}{n}
\]

其实根据二项式定理,二项式系数中的偶数项和奇数项的和其实是一样的,也就是说,上述的式子其实就是

\[2^{n-1}-\binom{0}{n}=2^{n-1}-1
\]

然后就可以写了。一个小技巧,求一个数的幂次可以用内建函数 __builtin_ctz(x) 求得。

#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
using namespace std;
using ll = long long; constexpr int N = 2e5+5, P = 1e9+7; ll qpow(ll a, ll b) {
ll res=1;
for(;b;b>>=1,a=(a*a)%P)if(b&1)res=res*a%P;
return res;
} int cc[35]; int main() {
#ifndef ONLINE_JUDGE
freopen("1.in", "r", stdin);
#endif // !ONLINE_JUDGE
cin.tie(nullptr)->ios::sync_with_stdio(false);
int n; cin>>n;
rep(i,0,n){
int x; cin>>x;
cc[__builtin_ctz(x)] ++;
}
ll ans=0, tot=0;
for(int i=31;i>=0;i--){
if(cc[i]){
if(i) ans=(ans+qpow(2,tot)*(qpow(2,cc[i]-1)-1)%P)%P;
else ans=(ans+qpow(2,tot)*(qpow(2,cc[i])-1)%P)%P;
tot += cc[i];
}
}
cout<<ans;
return 0;
}

Codeforces Global Round 17的更多相关文章

  1. CodeForces Global Round 1

    CodeForces Global Round 1 CF新的比赛呢(虽然没啥区别)!这种报名的人多的比赛涨分是真的快.... 所以就写下题解吧. A. Parity 太简单了,随便模拟一下就完了. B ...

  2. Codeforces Global Round 1 - D. Jongmah(动态规划)

    Problem   Codeforces Global Round 1 - D. Jongmah Time Limit: 3000 mSec Problem Description Input Out ...

  3. Codeforces Global Round 2 题解

    Codeforces Global Round 2 题目链接:https://codeforces.com/contest/1119 A. Ilya and a Colorful Walk 题意: 给 ...

  4. Codeforces Global Round 1 (A-E题解)

    Codeforces Global Round 1 题目链接:https://codeforces.com/contest/1110 A. Parity 题意: 给出{ak},b,k,判断a1*b^( ...

  5. Codeforces Beta Round #17 D. Notepad (数论 + 广义欧拉定理降幂)

    Codeforces Beta Round #17 题目链接:点击我打开题目链接 大概题意: 给你 \(b\),\(n\),\(c\). 让你求:\((b)^{n-1}*(b-1)\%c\). \(2 ...

  6. Codeforces Global Round 3

    Codeforces Global Round 3 A. Another One Bites The Dust 有若干个a,有若干个b,有若干个ab.你现在要把这些串拼成一个串,使得任意两个相邻的位置 ...

  7. Codeforces Global Round 1 (CF1110) (未完结,只有 A-F)

    Codeforces Global Round 1 (CF1110) 继续补题.因为看见同学打了这场,而且涨分还不错,所以觉得这套题目可能会比较有意思. 因为下午要开学了,所以恐怕暂时不能把这套题目补 ...

  8. 【手抖康复训练1 】Codeforces Global Round 6

    [手抖康复训练1 ]Codeforces Global Round 6 总结:不想复习随意打的一场,比赛开始就是熟悉的N分钟进不去时间,2333,太久没写题的后果就是:A 题手抖过不了样例 B题秒出思 ...

  9. Codeforces Global Round 11 个人题解(B题)

    Codeforces Global Round 11 1427A. Avoiding Zero 题目链接:click here 待补 1427B. Chess Cheater 题目链接:click h ...

  10. Codeforces Beta Round #17 C. Balance DP

    C. Balance 题目链接 http://codeforces.com/contest/17/problem/C 题面 Nick likes strings very much, he likes ...

随机推荐

  1. 【LeetCode】三数之和+四数之和(双指针)

    之所以放在一起是因为,"四数之和"的解题方法基本与"三数之和"一致 由此我们可以推出n数之和的解法 本质上,我们只是使用双指针的方法降低此类问题的时间复杂度 当 ...

  2. My First Blog Ever——记我在交大ACM班的第一个学期

    很巧的是,就在俞老师下发"学期小结"这一任务的前一天,我在跟朋友聊天时想到了要将自己这一学期的经历以文字的形式留存.毕竟,过去的一个学期实在有太多东西值得记述了:我离开了自己从童年 ...

  3. magic-api数据库存储方案

    建表语句 drop table if exists magic_api_file; CREATE TABLE `magic_api_file` ( `id` int(11) NOT NULL AUTO ...

  4. 在执行npm install执行报错node-sass

    1 错误信息 这个错误信息不是我当时的报错信息,是网上找的,报错的时候忘记存了,处理好了又找不到错误信息,就从网上找的差不多的错误信息 gyp ERR! configure error gyp ERR ...

  5. *已解决 Javawe中servlet时出现空白页面,但又网站不报错的问题追溯(编码

    本次随笔内容为在学习过程中遇到问题不断排问题,不断查资料解决的过程,小菜鸟学习~相互交流(菜鸟互啄~) 遇到问题: Javawe中servlet时出现空白页面,但又网站不报错的问题追溯 解决: 1.t ...

  6. freeRTOS检测栈溢出

    将FreeRTOSConfig.h里面的configCHECK_FOR_STACK_OVERFLOW设置为2. 随便一个文件里,加入 #include "task.h" void ...

  7. 【Oculus Interaction SDK】(十)在 VR 中使用手势识别

    前言 前段时间 Oculus 的 SDK 频繁更新,很多已有的教程都不再适用于现在的版本了.本系列文章的主要目的是记录现版本常见功能的实现方法,便于自己后续开发.当然,不排除我文章刚写完 SDK 又变 ...

  8. 利用canvas+js完成滑块验证码中canvas部分思路

    1. 最终效果 2.滑块验证码思路 大概思路:设置两个画布,一个为显示图像的canvas画布,一个为拼图的block画布,block画布拼图内容从图像画布中的一部分裁剪得到(使用clip()),通过绑 ...

  9. JZOJ 4754.矩阵

    \(\text{Problem}\) \(\text{Solution}\) 纪念我考场正解被二分暴力暴踩... 首先二分的话,显然可以二分出答案,然后数矩阵和大于等于本矩阵的是否有 \(k\) 个 ...

  10. 微信小程序之permission字段

    最近查看我发布的小程序出了问题,没有显示天气,打开文件查看,出现如下提示 那么如何解决呢 在 app.json 里面增加 permission 属性配置然后在app.json中添加代码 整个app.j ...