Rb(redis blaster),一个为 redis 实现 non-replicated 分片的 python 库

Rb,redis blaster,是一个为 redis 实现非复制分片(non-replicated sharding)的库。它在 python redis 之上实现了一个自定义路由系统,允许您自动定位不同的服务器,而无需手动将请求路由到各个节点。
它没有实现 redis 的所有功能,也没有尝试这样做。 您可以随时将客户端连接到特定主机,但大多数情况下假设您的操作仅限于可以自动路由到不同节点的基本 key/value 操作。
你可以做什么:
- 自动针对主机进行单
key操作 - 对所有或部分节点执行命令
- 并行执行所有这些
安装
rb 在 PyPI 上可用,可以从那里安装:
$ pip install rb
配置
开始使用 rb 非常简单。如果您之前一直在使用 py-redis,您会感到宾至如归。 主要区别在于,不是连接到单个主机,而是将 cluster 配置为连接到多个:
from rb import Cluster
cluster = Cluster(hosts={
0: {'port': 6379},
1: {'port': 6380},
2: {'port': 6381},
3: {'port': 6382},
4: {'port': 6379},
5: {'port': 6380},
6: {'port': 6381},
7: {'port': 6382},
}, host_defaults={
'host': '127.0.0.1',
})
在这种情况下,我们在同一主机上的四个不同服务器进程上设置了 8 个节点。hosts 参数是要连接的主机的映射。 字典的 key 是 host ID(整数),值是参数字典。host_defaults 是为所有主机填写的可选默认值字典。 如果您想共享一些重复的常见默认值(在这种情况下,所有主机都连接到 localhost),这很有用。
在默认配置中,PartitionRouter 用于路由。
路由
现在集群已经构建好了,我们可以使用 Cluster.get_routing_client() 来获取一个 redis 客户端,它会为每个命令自动路由到正确的 redis 节点:
client = cluster.get_routing_client()
results = {}
for key in keys_to_look_up:
results[key] = client.get(key)
该客户端的工作原理与标准的 pyredis StrictClient 非常相似,主要区别在于它只能执行只涉及一个 key 的命令。
然而,这个基本操作是串联运行的。使 rb 有用的是它可以自动构建 redis 管道并将查询并行发送到许多主机。但是,这会稍微改变用法,因为现在该值无法立即使用:
results = {}
with cluster.map() as client:
for key in keys_to_look_up:
results[key] = client.get(key)
虽然到目前为止看起来很相似,但不是将实际值存储在 result 字典中,而是存储 Promise 对象。当 map context manager 结束时,它们保证已经被执行,您可以访问 Promise.value 属性来获取值:
for key, promise in results.iteritems():
print '%s: %s' % (key, promise.value)
如果要向所有参与的主机发送命令(例如删除数据库),可以使用 Cluster.all() 方法:
with cluster.all() as client:
client.flushdb()
如果你这样做,promise 值是一个字典,其中 host ID 作为 key,结果作为 value。举个例子:
with cluster.all() as client:
results = client.info()
for host_id, info in results.iteritems():
print 'host %s is running %s' % (host_id, info['os'])
要明确针对某些主机,您可以使用 Cluster.fanout() 接受要将命令发送到 host ID 列表。
API
这是公共 API 的完整参考。请注意,此库扩展了 Python redis 库,因此其中一些类具有更多功能,您需要查阅 py-redis 库。
Cluster
class rb.Cluster(hosts, host_defaults=None, pool_cls=None, pool_options=None, router_cls=None, router_options=None)
cluster 是 rb 背后的核心对象。 它保存到各个节点的连接池,并且可以在应用程序运行期间在中央位置共享。
具有默认 router 的四个 redis 实例上的集群的基本示例:
cluster = Cluster(hosts={
0: {'port': 6379},
1: {'port': 6380},
2: {'port': 6381},
3: {'port': 6382},
}, host_defaults={
'host': '127.0.0.1',
})
hosts 是一个主机字典,它将 host ID 数量映射到配置参数。参数对应于 add_host() 函数的签名。这些参数的默认值是从 host_defaults 中提取的。要覆盖 pool 类,可以使用 pool_cls 和 pool_options 参数。这同样适用于 router 的 router_cls 和 router_options。pool 选项对于设置 socket 超时和类似参数很有用。
add_host(host_id=None, host='localhost', port=6379, unix_socket_path=None, db=0, password=None, ssl=False, ssl_options=None)- 将新主机添加到集群。 这仅对单元测试真正有用,因为通常主机是通过构造函数添加的,并且在第一次使用集群后进行更改不太可能有意义。
all(timeout=None, max_concurrency=64, auto_batch=True)- 扇出到所有主机。其他方面与
fanout()完全一样。 - 例子:
with cluster.all() as client:
client.flushdb()
- 扇出到所有主机。其他方面与
disconnect_pools()- 断开与内部池的所有连接。
execute_commands(mapping, *args, **kwargs)同时在
Redis集群上执行与路由key关联的一系列命令,返回一个新映射,其中值是与同一位置的命令对应的结果列表。例如:>>> cluster.execute_commands({
... 'foo': [
... ('PING',),
... ('TIME',),
... ],
... 'bar': [
... ('CLIENT', 'GETNAME'),
... ],
... })
{'bar': [<Promise None>],
'foo': [<Promise True>, <Promise (1454446079, 418404)>]}
作为
redis.client.Script实例的命令将首先检查它们在目标节点上的存在,然后在执行之前加载到目标上,并且可以与其他命令交错:>>> from redis.client import Script
>>> TestScript = Script(None, 'return {KEYS, ARGV}')
>>> cluster.execute_commands({
... 'foo': [
... (TestScript, ('key:1', 'key:2'), range(0, 3)),
... ],
... 'bar': [
... (TestScript, ('key:3', 'key:4'), range(3, 6)),
... ],
... })
{'bar': [<Promise [['key:3', 'key:4'], ['3', '4', '5']]>],
'foo': [<Promise [['key:1', 'key:2'], ['0', '1', '2']]>]}
在内部,
FanoutClient用于发出命令。
fanout(hosts=None, timeout=None, max_concurrency=64, auto_batch=True)- 用于获取路由客户端、开始扇出操作并
join结果的快捷上下文管理器。 - 在上下文管理器中,可用的客户端是
FanoutClient。示例用法:with cluster.fanout(hosts='all') as client:
client.flushdb()
- 用于获取路由客户端、开始扇出操作并
get_local_client(host_id)- 返回特定主机
ID的本地化client。这个client就像一个普通的Python redis客户端一样工作,并立即返回结果。
- 返回特定主机
get_local_client_for_key(key)- 类似于
get_local_client_for_key()但根据router所说的key目的地返回client。
- 类似于
get_pool_for_host(host_id)- 返回给定主机的连接池。
- redis 客户端使用此连接池来确保它不必不断地重新连接。如果要使用自定义 redis 客户端,可以手动将其作为连接池传入。
get_router()- 返回
cluster的router。如果cluster重新配置,router将被重新创建。 通常,您不需要自己与router交互,因为集群的路由客户端会自动执行此操作。 - 这将返回
BaseRouter的一个实例。
- 返回
get_routing_client(auto_batch=True)- 返回一个路由客户端。该客户端能够自动将请求路由到各个主机。 它是线程安全的,可以类似于主机本地客户端使用,但它会拒绝执行无法直接路由到单个节点的命令。
- 路由客户端的默认行为是尝试将符合条件的命令批处理成批处理版本。 例如,路由到同一节点的多个
GET命令最终可以合并为一个MGET命令。可以通过将auto_batch设置为False来禁用此行为。这对于调试很有用,因为MONITOR将更准确地反映代码中发出的命令。 - 有关详细信息,请参阅
RoutingClient。
map(timeout=None, max_concurrency=64, auto_batch=True)- 用于获取路由客户端、开始映射操作并
join结果的快捷上下文管理器。max_concurrency定义在隐式连接发生之前可以存在多少未完成的并行查询。 - 在上下文管理器中,可用的客户端是
MappingClient。示例用法:results = {}
with cluster.map() as client:
for key in keys_to_fetch:
results[key] = client.get(key)
for key, promise in results.iteritems():
print '%s => %s' % (key, promise.value)
- 用于获取路由客户端、开始映射操作并
remove_host(host_id)- 从
client中删除host。这仅对单元测试真正有用。
- 从
Clients
class rb.RoutingClient(cluster, auto_batch=True)
可以路由到单个目标的客户端。
有关参数,请参见 Cluster.get_routing_client()。
execute_command(*args, **options)- 执行命令并返回解析后的响应
fanout(hosts=None, timeout=None, max_concurrency=64, auto_batch=None)- 返回映射操作的
context manager,该操作扇出到手动指定的主机,而不是使用路由系统。 例如,这可用于清空所有主机上的数据库。context manager返回一个FanoutClient。 示例用法:with cluster.fanout(hosts=[0, 1, 2, 3]) as client:
results = client.info()
for host_id, info in results.value.iteritems():
print '%s -> %s' % (host_id, info['is'])
- 返回的
promise将所有结果累积到由host_id键入的字典中。 hosts参数是一个host_id列表,或者是字符串'all',用于将命令发送到所有主机。fanout API需要非常小心地使用,因为当key被写入不期望它们的主机时,它可能会造成很多损坏。
- 返回映射操作的
get_fanout_client(hosts, max_concurrency=64, auto_batch=None)- 返回线程不安全的扇出客户端。
- 返回
FanoutClient的实例。
get_mapping_client(max_concurrency=64, auto_batch=None)- 返回一个线程不安全的映射客户端。此客户端的工作方式类似于
redis管道并返回最终结果对象。它需要join才能正常工作。您应该使用自动join的map()上下文管理器,而不是直接使用它。 - 返回
MappingClient的一个实例。
- 返回一个线程不安全的映射客户端。此客户端的工作方式类似于
map(timeout=None, max_concurrency=64, auto_batch=None)- 返回映射操作的
context manager。 这会并行运行多个查询,然后最后join以收集所有结果。 - 在上下文管理器中,可用的客户端是
MappingClient。示例用法:results = {}
with cluster.map() as client:
for key in keys_to_fetch:
results[key] = client.get(key)
for key, promise in results.iteritems():
print '%s => %s' % (key, promise.value)
- 返回映射操作的
class rb.MappingClient(connection_pool, max_concurrency=None, auto_batch=True)
路由客户端使用 cluster 的 router 根据执行的 redis 命令的 key 自动定位单个节点。
有关参数,请参见 Cluster.map()。
cancel()- 取消所有未完成的请求。
execute_command(*args, **options)- 执行命令并返回解析后的响应
join(timeout=None)- 等待所有未完成的响应返回或超时
mget(keys, *args)- 返回与
key顺序相同的值列表
- 返回与
mset(*args, **kwargs)- 根据映射设置
key/value。映射是key/value对的字典。key和value都应该是可以通过str()转换为string的字符串或类型。
- 根据映射设置
class rb.FanoutClient(hosts, connection_pool, max_concurrency=None, auto_batch=True)
这与 MappingClient 的工作方式相似,但它不是使用 router 来定位主机,而是将命令发送到所有手动指定的主机。
结果累积在由 host_id 键入的字典中。
有关参数,请参见 Cluster.fanout()。
execute_command(*args, **options)- 执行命令并返回解析后的响应
target(hosts)- 为一次调用临时重新定位
client。当必须为一次调用处理主机subset时,这很有用。
- 为一次调用临时重新定位
target_key(key)- 临时重新定位客户端以进行一次调用,以专门路由到给定
key路由到的一台主机。 在这种情况下,promise的结果只是一个主机的值而不是字典。 1.3版中的新功能。
- 临时重新定位客户端以进行一次调用,以专门路由到给定
Promise
class rb.Promise
一个尝试为 Promise 对象镜像 ES6 API 的 Promise 对象。与 ES6 的 Promise 不同,这个 Promise 也直接提供对底层值的访问,并且它有一些稍微不同的静态方法名称,因为这个 Promise 可以在外部解析。
static all(iterable_or_dict)- 当所有传递的
promise都解决时,promise就解决了。你可以传递一个promise列表或一个promise字典。
- 当所有传递的
done(on_success=None, on_failure=None)- 将一些回调附加到
Promise并返回Promise。
- 将一些回调附加到
is_pending- 如果
promise仍然等待,则为True,否则为False。
- 如果
is_rejected- 如果
promise被拒绝,则为True,否则为False。
- 如果
is_resolved- 如果
promise已解决,则为True,否则为False。
- 如果
reason- 如果它被拒绝,这个
promise的原因。
- 如果它被拒绝,这个
reject(reason)- 以给定的理由拒绝
promise。
- 以给定的理由拒绝
static rejected(reason)- 创建一个以特定值被拒绝的
promise对象。
- 创建一个以特定值被拒绝的
resolve(value)- 用给定的值解决
promise。
- 用给定的值解决
static resolved(value)- 创建一个以特定值解析的
promise对象。
- 创建一个以特定值解析的
then(success=None, failure=None)- 向
Promise添加成功和/或失败回调的实用方法,该方法还将在此过程中返回另一个Promise。
- 向
value- 如果它被解决,这个
promise所持有的值。
- 如果它被解决,这个
Routers
class rb.BaseRouter(cluster)
所有路由的基类。如果你想实现一个自定义路由,这就是你的子类。
cluster- 引用回此
router所属的Cluster。
- 引用回此
get_host_for_command(command, args)- 返回应执行此命令的主机。
get_host_for_key(key)- 执行路由并返回目标的
host_id。 - 子类需要实现这一点。
- 执行路由并返回目标的
get_key(command, args)- 返回命令操作的
key。
- 返回命令操作的
class rb.ConsistentHashingRouter(cluster)
基于一致哈希算法返回 host_id 的 router。 一致的哈希算法仅在提供 key 参数时才有效。
该 router 要求主机是无间隙的,这意味着 N 台主机的 ID 范围从 0 到 N-1。
get_host_for_key(key)- 执行路由并返回目标的
host_id。 - 子类需要实现这一点。
- 执行路由并返回目标的
class rb.PartitionRouter(cluster)
一个简单的 router,仅根据简单的 crc32 % node_count 设置将命令单独路由到单个节点。
该 router 要求主机是无间隙的,这意味着 N 台主机的 ID 范围从 0 到 N-1。
- get_host_for_key(key)
- 执行路由并返回目标的
host_id。 - 子类需要实现这一点。
- 执行路由并返回目标的
exception rb.UnroutableCommand
如果发出的命令无法通过 router 路由到单个主机,则引发。
Testing
class rb.testing.TestSetup(servers=4, databases_each=8, server_executable='redis-server')
测试设置是生成多个 redis 服务器进行测试并自动关闭它们的便捷方式。 这可以用作 context manager 来自动终止客户端。
rb.testing.make_test_cluster(*args, **kwargs)- 用于创建测试设置然后从中创建
cluster的便捷快捷方式。这必须用作context manager:from rb.testing import make_test_cluster
with make_test_cluster() as cluster:
...
- 用于创建测试设置然后从中创建
Rb(redis blaster),一个为 redis 实现 non-replicated 分片的 python 库的更多相关文章
- PHP + Redis 实现一个简单的twitter
原文位于Redis官网http://redis.io/topics/twitter-clone Redis是NoSQL数据库中一个知名数据库,在新浪微博中亦有部署,适合固定数据量的热数据的访问. 作为 ...
- 为redis分配一个新的端口
为redis分配一个8888端口,操作步骤如下:1.$REDIS_HOME/redis.conf重新复制一份,重命名为redis8888.conf.2.打开redis8888.conf配置文件,找到p ...
- 使用redis设计一个简单的分布式锁
最近看了有关redis的一些东西,了解了redis的一下命令,就记录一下: redis中的setnx命令: 关于redis的操作命令,我们一般会使用set,get等一系列操作,数据结构也有很多,这里我 ...
- .Net Core使用Redis的一个入门简单Demo
本例子讲述一个在.Net core环境中对Redis数据库进行增删改查操作. 首先,要安装好Redis数据库,至于怎么安装,本文不再赘述,可以自行百度,有很详细的教程. 安装好之后,在CMD中输入 r ...
- 180626-Spring之借助Redis设计一个简单访问计数器
文章链接:https://liuyueyi.github.io/hexblog/2018/06/26/180626-Spring之借助Redis设计一个简单访问计数器/ Spring之借助Redis设 ...
- Python使用Redis实现一个简单作业调度系统
Python使用Redis实现一个简单作业调度系统 概述 Redis作为内存数据库的一个典型代表,已经在非常多应用场景中被使用,这里仅就Redis的pub/sub功能来说说如何通过此功能来实现一个简单 ...
- 什么鬼,面试官竟然让我用Redis实现一个消息队列!!?
GitHub 9.4k Star 的Java工程师成神之路 ,不来了解一下吗? GitHub 9.4k Star 的Java工程师成神之路 ,真的不来了解一下吗? GitHub 9.4k Star 的 ...
- Canvas + WebSocket + Redis 实现一个视频弹幕
原文出自:https://www.pandashen.com 页面布局 首先,我们需要实现页面布局,在根目录创建 index.html 布局中我们需要有一个 video 多媒体标签引入我们的本地视频, ...
- 手把手教你用redis实现一个简单的mq消息队列(java)
众所周知,消息队列是应用系统中重要的组件,主要解决应用解耦,异步消息,流量削锋等问题,实现高性能,高可用,可伸缩和最终一致性架构.目前使用较多的消息队列有 ActiveMQ,RabbitMQ,Zero ...
随机推荐
- C#处理医学影像(三):基于漫水边界自动选取病灶范围的实现思路
开发背景: 医生在实际使用PACS软件观察病灶时,经常会测量不规则病灶的周长和面积,使用画笔工具勾勒比较耗时且准度欠佳, 或者在标记人工智能训练样本时少则几百张,多则几千张,为极大减少耗时和极大提高工 ...
- 使用MariaDB backup恢复主从
安装 yum install MariaDB-backup 备份命令 工具需要直接操作数据目录,需要在数据库服务器上执行 mariabackup --backup --target-dir=/data ...
- 4月18日 python学习总结 异常处理、网络编程
一. 异常 1.什么是异常 异常是错误发生的信号,程序一旦出错,如果程序中还没有相应的处理机制 那么该错误就会产生一个异常抛出来,程序的运行也随之终止 2.一个异常分为三部分: 1.异常的追踪信息 2 ...
- SpringCloudAlibaba 微服务讲解(三)Nacos Discovery-服务治理
3.1 服务治理 先来思考一个问题,通过上一章的操作,我们已经实现微服务之间的调用,但是我们把服务提供者的网络地址(ip,端口)等硬编码到了代码中,这种做法存在许多问题: 一旦服务提供者地址变化,就需 ...
- Java常见的垃圾收集器有哪些?
守拙者_6a98关注 2020.04.11 22:06:31字数 2,135阅读 394 实际上,垃圾收集器( GC , Garbage Collector )是和具体 JVM 实现紧密相关的,不同厂 ...
- nginx简介&nginx基本配置和优化
一.nginx简介 1.nginx的发展 Nginx是俄罗斯人编写的一款高性能HTTP和反向代理服务器.Nginx能够选择高效的epoll(Linux2.6内核).kqueue(FreeBSD).ev ...
- Springmvc入门基础(五) ---controller层注解及返回类型解说
0.@Controller注解 作用:通过@Controller注解,注明该类为controller类,即控制器类,需要被spring扫描,然后注入到IOC容器中,作为Spring的Bean来管理,这 ...
- Oracle入门基础(一)一一基本查询
SQL> --当前用户 SQL> show user SQL> --当前用户下的表 SQL> select * from tab; TNAME TABTYPE CLUSTERI ...
- Javascript Promises学习
Promise对象的三个状态 pending(进行中) fulfilled(已成功) rejected(已失败) Promise代表一个异步操作,对象的状态一旦改变,就不会再改变 Promise构造函 ...
- 学习openstack(一)
一.云计算 云计算特点:必须通过网络使用:弹性计算(按需付费):对用户是透明的(用户不考虑后端的具体实现): 云计算分类:私有云.公有云(amazon是老大.aliyun.tingyun.tencen ...