简单状压dp的思考 - 最大独立集问题和最大团问题 - 壹
本文参考:CPH ,USACO Guide
(大佬请越过,这是初学笔记,不要吐槽内容)
前置知识:位运算基础,动态规划基础
介绍
状态是元素的子集的动态规划算法,可以用位运算来高效的优化。
那么第一道题就应声而来:
我觉得这道题会花费很长时间,但是这题不算难,首先要自己尝试。
题目意思是给定一个很小的图,从\(1\)号点到\(n\)号点,每个点恰好走一次有几种方案?
看过这道题,你是否想到了旅行商问题?没错,这是一个没有保证正确的多项式时间复杂度的算法的问题。好吧,至少方向是有了。\(\mathcal O(n!)\)枚举,这是一个很贴合\(n\)范围的算法。但是显然他还需要再快一点。
不去思考如何优化,一般的思路是考虑在枚举中我们浪费了哪些时间。如果这个算法还可以做最优,那么一定是有哪一些重复计算。因为动态规划的本质就是利用记忆化来减少重复计算。在不考虑动态规划的情况下,大多数暴力算法也可以先考虑哪些计算重复。
那么在这个哈密顿航班的问题里边,我们发现如果固定了一些点集和一个结尾,就能根据它算出所有点。
如果用动态规划的思路来思考的话,如果我们已经求得了点集S从1走到i的答案,那么其他答案就可以由这个状态推出。因为在这个问题里面每个状态只需要知道走到哪里和还有哪些点需要走。这道题就是这么做的。
这样我们把复杂度优化到\(\mathcal O(2^n n)\)级别。
练习
CF1316E Team Building
USACO Gold Uddered but not Herd
这两道题都是推荐的简单但比较创新的状压DP。
深入
在一张比较小的图中选择最大的点集使得选出来的点之间任意两点在原图没有边。图的点的数量小于等于40。
首先可以把原题转化成另一个问题,建立原图的补图,就是说点之间有边变无边,无变边有边。根据题意,我们可以把题目转化成求补图的最大团问题(MCP, Maximum Clique Problem)。团可以理解成为一个是完全图的子图。
其实这个DP不是很好考虑。而且感觉如果已经求出了一个子图的最大团,这个最大团未必包含在子图增加一个点后的新图的最大团里面,因为一个子图的最大团可能有多个。而且只存储最大团的数量也不是一个好办法,因为这样没有办法转移方程。
以上这种考虑完全是基于,每次DP在原来子图基础上扩展一个点这样的思路。那么可以切换一下思路。那么考虑扩展之后的子图最大团,这个最大团去掉一个点会如何。我们让动态规划数组存储子图中最大团的点集,也就是说动态规划数组中也是一个状压。
那么再来细细扩充一下刚才的思路。假设当前要求子图最大团的子图的点集为S。单纯的用 \(F[S]\) 表示子图中的一种最大团解答方案。考虑S中的一个点k,如果这个点在最大团中,那么 \(F[S]=F[S中与k相连的点集] \bigcup {k}\),否则即为 \(F[S/{k}]\) ,取两个里面边数更多的一种方案。因为状态方程设置的是任意一种最大团方案,所以不用担心。
但是这样复杂度为 \(\mathcal O(2^n)\) 或\(\mathcal O(2^n n)\),还需要进一步优化。
简单状压dp的思考 - 最大独立集问题和最大团问题 - 壹的更多相关文章
- 简单状压dp的思考 - 最大独立集问题和最大团问题 - 贰
接着上文 题目链接:最大独立集问题 上次说到,一种用状压DP解决任意无向图最大团问题(MCP)的方程是: 注:此处popcountmax代表按照二进制位下1的个数作为关键字比较,即选择二进制位下1的个 ...
- POJ 3254 简单状压DP
没什么可说的,入门级状压DP.直接撸掉 #include <iostream> #include <cstring> #include <cstdlib> #inc ...
- poj2411 Mondriaan's Dream[简单状压dp]
$11*11$格子板上铺$1*2$地砖方案.以前做过?权当复习算了,毕竟以前学都是浅尝辄止的..常规题,注意两个条件:上一行铺竖着的则这一行同一位一定要铺上竖的,这一行单独铺横的要求枚举集合中出现连续 ...
- Walk Through Squares HDU - 4758 AC自动机+简单状压DP
题意:给你两个串,求用m个R,n个D能组成多少个包含这两个串 题解:先构造一个AC自动机记录每个状态包含两个串的状态, 状态很容易定义 dp[i][j][k][status]表示在AC自动机K这个节点 ...
- [Usaco2008 Nov]mixup2 混乱的奶牛 简单状压DP
1231: [Usaco2008 Nov]mixup2 混乱的奶牛 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 685 Solved: 383[S ...
- 2018.09.22 牧场的安排(状压dp)
描述 农民 John 购买了一处肥沃的矩形牧场,分成M*N(1 <= M <= 12; 1 <= N <= 12)个 格子.他想在那里的一些格子中种植美味的玉米.遗憾的是,有些 ...
- 2019牛客多校第五场 F maximum clique 1 状压dp+最大独立集
maximum clique 1 题意 给出一个集合s,求每个子集的最大独立集的权值和(权值是独立集的点个数) 分析 n比较小,一股浓浓的暴力枚举每一个子集的感觉,但是暴力枚举模拟肯定会T,那么想一想 ...
- ZOJ3802 Easy 2048 Again (状压DP)
ZOJ Monthly, August 2014 E题 ZOJ月赛 2014年8月 E题 http://acm.zju.edu.cn/onlinejudge/showProblem.do?proble ...
- POJ 1185 炮兵阵地(状压DP)
炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 26426 Accepted: 10185 Descriptio ...
随机推荐
- stm32F103RCT6使用FFT运算分析波形详解(非常新手)
最近学校电赛院队招新,出的招新题就是低频示波器的.之前一直没有弄懂FFT,借着这次机会实现了一下. FFT原理详解 FFT,就是快速傅里叶变换,这个操作能够将时域信号转化成频域信号,然后对信号进行分析 ...
- java基础4.18
1.java的"一次编写,处处运行"如何实现?: 答:java之所有能实现一次编译,到处运行,是因为java在每个系统平台上都有java虚拟机(jvm),java编译的中间文件cl ...
- Vue.js 3.x 中跨层级组件如何传递数据?
provide/inject 基本用法 在 Vue.js 中,跨层级组件如果想要传递数据,我们可以直接使用 props 来将祖先组件的数据传递给子孙组件: 注:上图来自 Vue.js 官网:Prop ...
- 分享一下 Idea 的 scope 功能
分享一下 Idea 的 scope 功能 事情的起因是我在使用 idea 的call hierarchy功能时,觉得它没有像find usage那样有排除功能,并且如果点击了展开全部,当代码中使用了某 ...
- 公众号走走看看——js
1.数字转换字符串/字符串转换数字 2.短循环 3.性能测试(执行时间) 4.交换值 5.合并数组(IE不兼容) 6.数组去重 7.判断给定参数是否是数字 8.获取最大最小值.取随机数(arr.len ...
- Redis GEO 地理位置
目录 GEO指令 GEOADD GEODIST GEOPOP GEOHASH GEORADIUS GEORADIUSBYMEMBER 指令补充 删除操作 避免单集合数量过多 存储原理 GEOADD存储 ...
- 消息队列,IPC机制(进程间通信),生产者消费者模型,线程及相关
消息队列 创建 ''' Queue是模块multiprocessing中的一个类我们也可以这样导入from multiprocessing import Queue,创 建时queue = Queue ...
- 并发编程之volatile与JMM多线程内存模型
一.通过程序看现象 在开始为大家讲解Java 多线程缓存模型之前,我们先看下面的这一段代码.这段代码的逻辑很简单:主线程启动了两个子线程,一个线程1.一个线程2.线程1先执行,sleep睡眠2秒钟之后 ...
- docker使用详解
一.docker简介 docker 是一个开源的应用容器引擎,docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化 ...
- SSO 方案演进
背景介绍 随着业务与技术的发展,现今比以往任何时候都更需要单点登录 SSO 身份验证. 现在几乎每个网站都需要某种形式的身份验证才能访问其功能和内容. 随着网站和服务数量的增加,集中登录系统已成为一种 ...