title: Graph-Based Social Relation Reasoning, 2020

task: we propose a simpler, faster, and more accurate method named graph relational reasoning network (GR2N) for social relation recognition.

abstract: Understanding social relations from an image has great potential for intelligent systems such as social chatbots and personal assistants.  Different from existing methods that process all social relations on an image independently, our method considers the paradigm of jointly inferring the relations by constructing a social relation graph.  Furthermore, the proposed GR2N constructs several virtual relation graphs to explicitly grasp the strong logical constraints among different types of social relations.

通过图像来理解社会关系对于智能系统,如社交聊天机器人和个人助理有着巨大的潜力。不同于现有的在一个图像上独立处理所有社会关系的方法,我们的方法考虑了通过构造一个社会关系图来共同推断关系的范式。此外,所提出的GR2N构造了若干虚拟关系图,以显式地把握不同类型社会关系之间的强逻辑约束。

由于潜在的隐私风险警告等广泛的应用,人们对在给定的静止图像中理解人与人之间的关系越来越感兴趣, 智能自主系统[52],群活性分析[19]。

由于社会关系通常形成一个合理的社会场景,它们不是相互独立的,而是高度相关的。 独立地预测同一图象上的关系,需要从社会场景的高局部性出发,这可能会导致社会关系图的不合理和矛盾。(Independently predicting the relations on the same image suffers from the high locality in social scenes, which may result in an unreasonable and contradictory social relation graph.)

为此,我们认为,共同推断每个图像的所有关系有助于构建一个合理的、一致的社会关系图,同时对社会场景有一个透彻的理解。

To this end, we consider that jointly inferring all relations for each image helps construct a reasonable and consistent social relation graph with a thorough understanding of the social scene.

此外,由于同一图像上的社会关系往往遵循较强的逻辑约束 logical constraints,,同时考虑所有关系可以有效地利用这些关系的一致性。

显然,同一图像上的关系在推理中是相互帮助的,这在现有的方法中并没有作为一个重要的线索加以利用。

we propose a graph relational reasoning network (GR2N)

现有的gnn方法大多只是通过消息传递来利用上下文信息,无法明确把握不同类型社会关系之间的逻辑约束。(Most existing GNNs' methods simply exploit contextual information via message passing, which fails to explicitly grasp the logical constraints among different types of social relations.)

为了利用强逻辑约束,提出的GR2N用共享节点表示为不同的关系类型构造不同的虚拟关系图。(To exploit the strong logical constraints, the proposed GR2N constructs different virtual relation graphs for different relation types with shared node representations.)

我们的方法在每个虚拟关系图上学习特定于类型的消息,并通过汇总所有虚拟关系图上的所有邻居消息来更新节点表示。 最后,节点的最终表示可用来预测图上所有节点对的关系。Our method learns type-specificc messages on each virtual relation graph and updates the node representations by aggregating all neighbor messages across all virtual relation graphs. In the end, the final representations of nodes are utilized to predict the relations of all pairs of nodes on the graph.

Graph-Based Social Relation Reasoning的更多相关文章

  1. social relation & recommender system

    由于社交网络盛行,现在许多关于推荐系统的研究都考虑了如何使用social relation来改进推荐系统.虽然有很多论文都成功的使用social relation改进了推荐效果,然而,也有一些尝试失败 ...

  2. Graph Based SLAM 基本原理

    作者 | Alex 01 引言 SLAM 基本框架大致分为两大类:基于概率的方法如 EKF, UKF, particle filters 和基于图的方法 .基于图的方法本质上是种优化方法,一个以最小化 ...

  3. 论文阅读-Temporal Phenotyping from Longitudinal Electronic Health Records: A Graph Based Framework

  4. Visualizing MNIST with t-SNE, MDS, Sammon’s Mapping and Nearest neighbor graph

    MNIST 可视化 Visualizing MNIST: An Exploration of Dimensionality Reduction At some fundamental level, n ...

  5. Survey of single-target visual tracking methods based on online learning 翻译

    基于在线学习的单目标跟踪算法调研 摘要 视觉跟踪在计算机视觉和机器人学领域是一个流行和有挑战的话题.由于多种场景下出现的目标外貌和复杂环境变量的改变,先进的跟踪框架就有必要采用在线学习的原理.本论文简 ...

  6. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  7. CVPR 2017 Paper list

    CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...

  8. zz【清华NLP】图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐

    [清华NLP]图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐 图神经网络研究成为当前深度学习领域的热点.最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengy ...

  9. ### Paper about Event Detection

    Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...

随机推荐

  1. 【FAQ】接入HMS Core地图服务过程中常见问题总结

    HMS Core地图服务(Map Kit)给开发者提供一套地图开发调用的SDK,助力全球开发者实现个性化地图呈现与交互,方便轻松地在应用中集成地图相关的功能,全方位提升用户体验. 在日常工作中,我们会 ...

  2. 从0开始基于Webpack5 搭建HTML+Less 前端工程

              基于Webpack5 搭建HTMl+Less的前端项目 新建一个文件夹(比如命名为webpack) 用编辑器打开该文件夹,并在编辑器的终端执行 npm init -y 自动创建pa ...

  3. python 本地配置文件库 Dynaconf 简介

    [前言] 在项目中经常会遇到以下几种需要用到配置文件的场景: 相同的配置参数用在不同的代码中,如果需要调整,则需要手动将各个使用到的地方都相应调整. 密码等信息不想硬编码在项目文件中. 配置文件的格式 ...

  4. app嵌套页

    Wdatepicker

  5. 生成器对象(自定义迭代器),自定义range方法,模块

    自定义迭代器 一 .生成器与yield ''' 我们得到一个迭代器通常都是调用可迭代对象的__iter__方法 ,例如 list.iter() 得到一个迭代器, 但是当list很大时候,就违背了pyt ...

  6. python之贪婪算法

    贪婪算法 贪婪算法也称为最优算法,这种算法并不是最准确的答案,但确认最接近答案的近似算法. 这时候有人会问,不是最准确的答案我要她干嘛?但是在日常中,我们有时候会遇到一些我们无法处理的问题,甚至是要花 ...

  7. 干掉RedisHelper,请这样用分布式缓存

    前言 我们在项目中使用Redis时通常是写一个单例模式的RedisHelper静态类,暴露一些常用的Get.Set等操作,在需要使用地方直接RedisHelper.StringGet(xx,xx)就可 ...

  8. 709. To Lower Case - LeetCode

    Question 709. To Lower Case Sollution 题目大意:字符串大写转小写 思路: 直接调用Java API函数 字符串转char数组,遍历数组,判断如果大写就转小写 Ja ...

  9. 课堂练习——neo4j简单使用

    启动neo4j: neo4j.bat console 进入neo4j数据库的conf目录下,编辑neo4j.conf文件:将当前数据库设置为你要建立的数据库名称(数据库不能重名): dbms.acti ...

  10. C#实现登录功能(连接SQLServer数据库)

    本例使用C#实现一个简单的登录功能,分为用户和管理员两个角色登录. 效果图: 核心代码 login.cs private void button1_Click(object sender, Event ...