没想到吧!这个可可爱爱的游戏居然是用 ECharts 实现的!
摘要:echarts 是一个很强大的图表库,除了我们常见的图表功能,还可以自定义图形,这个功能让我们可以很简单地在画布上绘制一些非常规的图形,基于此,我们来玩一些花哨的:做一个 Flappy Bird 小游戏。
本文分享自华为云社区《没想到吧!这个可可爱爱的游戏居然是用 ECharts 实现的!》,作者: DevUI 。
前言
echarts 是一个很强大的图表库,除了我们常见的图表功能,echarts 有一个自定义图形的功能,这个功能可以让我们很简单地在画布上绘制一些非常规的图形,基于此,我们来玩一些花哨的。
Flappy Bird 小游戏体验地址(看看你能玩几分):https://foolmadao.github.io/echart-flappy-bird/echarts-bird.html
下面我们来一步步实现他。
1 在坐标系中画一只会动的小鸟
首先实例化一个 echart 容器,再从网上找一个像素小鸟的图片,将散点图的散点形状,用自定义图片的方式改为小鸟。
const myChart = echarts.init(document.getElementById('main'));
option = {
series: [
{
name: 'bird',
type: 'scatter',
symbolSize: 50,
symbol: 'image://bird.png',
data: [
[50, 80]
],
animation: false
},
]
}; myChart.setOption(option);
要让小鸟动起来,就需要给一个向右的速度和向下的加速度,并在每一帧的场景中刷新小鸟的位置。而小鸟向上飞的动作,则可以靠角度的旋转来实现,向上飞的触发条件设置为空格事件。
option = {
series: [
{
xAxis: {
show: false,
type: 'value',
min: 0,
max: 200,
},
yAxis: {
show: false,
min: 0,
max: 100
},
name: 'bird',
type: 'scatter',
symbolSize: 50,
symbol: 'image://bird.png',
data: [
[50, 80]
],
animation: false
},
]
}; // 设置速度和加速度
let a = 0.05;
let vh = 0;
let vw = 0.5 timer = setInterval(() => {
// 小鸟位置和仰角调整
vh = vh - a;
option.series[0].data[0][1] += vh;
option.series[0].data[0][0] += vw;
option.series[0].symbolRotate = option.series[0].symbolRotate ? option.series[0].symbolRotate - 5 : 0; // 坐标系范围调整
option.xAxis.min += vw;
option.xAxis.max += vw; myChart.setOption(option);
}, 25);
效果如下
2 用自定义图形绘制障碍物
echarts 自定义系列,渲染逻辑由开发者通过 renderItem 函数实现。该函数接收两个参数 params 和 api,params 包含了当前数据信息和坐标系的信息,api 是一些开发者可调用的方法集合,常用的方法有:
- api.value (…),意思是取出 dataItem 中的数值。例如 api.value (0) 表示取出当前 dataItem 中第一个维度的数值。
- api.coord (…),意思是进行坐标转换计算。例如 var point = api.coord ([api.value (0), api.value (1)]) 表示 dataItem 中的数值转换成坐标系上的点。
- api.size (…), 可以得到坐标系上一段数值范围对应的长度。
- api.style (…),可以获取到 series.itemStyle 中定义的样式信息。
灵活使用上述 api,就可以将用户传入的 Data 数据转换为自己想要的坐标系上的像素位置。
renderItem 函数返回一个 echarts 中的 graphic 类,可以多种图形组合成你需要的形状,graphic 类型。对于我们游戏中的障碍物只需要使用矩形即可绘制出来,我们使用到下面两个类。
- type: group, 组合类,可以将多个图形类组合成一个图形,子类放在 children 中。
- type: rect, 矩形类,通过定义矩形左上角坐标点,和矩形宽高确定图形。
// 数据项定义为[x坐标,下方水管上侧y坐标, 上方水管下侧y坐标]
data: [
[150, 50, 80],
...
] renderItem: function (params, api) {
// 获取每个水管主体矩形的起始坐标点
let start1 = api.coord([api.value(0) - 10, api.value(1)]);
let start2 = api.coord([api.value(0) - 10, 100]);
// 获取两个水管头矩形的起始坐标点
let startHead1 = api.coord([api.value(0) - 12, api.value(1)]);
let startHead2 = api.coord([api.value(0) - 12, api.value(2) + 8])
// 水管头矩形的宽高
let headSize = api.size([24, 8])
// 水管头矩形的宽高
let rect = api.size([20, api.value(1)]);
let rect2 = api.size([20, 100 - api.value(2)]);
// 坐标系配置
const common = {
x: params.coordSys.x,
y: params.coordSys.y,
width: params.coordSys.width,
height: params.coordSys.height
}
// 水管形状
const rectShape = echarts.graphic.clipRectByRect(
{
x: start1[0],
y: start1[1],
width: rect[0],
height: rect[1]
},common
);
const rectShape2 = echarts.graphic.clipRectByRect(
{
x: start2[0],
y: start2[1],
width: rect2[0],
height: rect2[1]
},
common
) // 水管头形状
const rectHeadShape = echarts.graphic.clipRectByRect(
{
x: startHead1[0],
y: startHead1[1],
width: headSize[0],
height: headSize[1]
},common
); const rectHeadShape2 = echarts.graphic.clipRectByRect(
{
x: startHead2[0],
y: startHead2[1],
width: headSize[0],
height: headSize[1]
},common
); // 返回一个group类,由四个矩形组成
return {
type: 'group',
children: [{
type: 'rect',
shape: rectShape,
style: {
...api.style(),
lineWidth: 1,
stroke: '#000'
}
}, {
type: 'rect',
shape: rectShape2,
style: {
...api.style(),
lineWidth: 1,
stroke: '#000'
}
},
{
type: 'rect',
shape: rectHeadShape,
style: {
...api.style(),
lineWidth: 1,
stroke: '#000'
}
},
{
type: 'rect',
shape: rectHeadShape2,
style: {
...api.style(),
lineWidth: 1,
stroke: '#000'
}
}]
};
},
颜色定义,我们为了让水管具有光泽使用了 echarts 的线性渐变色对象。
itemStyle: {
// 渐变色对象
color: {
type: 'linear',
x: 0,
y: 0,
x2: 1,
y2: 0,
colorStops: [{
offset: 0, color: '#ddf38c' // 0% 处的颜色
}, {
offset: 1, color: '#587d2a' // 100% 处的颜色
}],
global: false // 缺省为 false
},
borderWidth: 3
},
另外,用一个 for 循环一次性随机出多个柱子的数据
function initObstacleData() {
// 添加minHeight防止空隙太小
let minHeight = 20;
let start = 150;
obstacleData = [];
for (let index = 0; index < 50; index++) {
const height = Math.random() * 30 + minHeight;
const obstacleStart = Math.random() * (90 - minHeight);
obstacleData.push(
[
start + 50 * index,
obstacleStart,
obstacleStart + height > 100 ? 100 : obstacleStart + height
]
)
}
}
再将背景用游戏图片填充,我们就将整个游戏场景,绘制完成:
3 进行碰撞检测
由于飞行轨迹和障碍物数据都很简单,所以我们可以将碰撞逻辑简化为小鸟图片的正方形中,我们判断右上和右下角是否进入了自定义图形的范围内。
对于特定坐标下的碰撞范围,因为柱子固定每格 50 坐标值一个,宽度也是固定的,所以,可碰撞的横坐标范围就可以简化为 (x / 50 % 1) < 0.6
在特定范围内,依据 Math.floor (x / 50) 获取到对应的数据,即可判断出两个边角坐标是否和柱子区域有重叠了。在动画帧中判断,如果重叠了,就停止动画播放,游戏结束。
// centerCoord为散点坐标点
function judgeCollision(centerCoord) {
if (centerCoord[1] < 0 || centerCoord[1] > 100) {
return false;
}
let coordList = [
[centerCoord[0] + 15, centerCoord[1] + 1],
[centerCoord[0] + 15, centerCoord[1] - 1],
] for (let i = 0; i < 2; i++) {
const coord = coordList[i];
const index = coord[0] / 50;
if (index % 1 < 0.6 && obstacleData[Math.floor(index) - 3]) {
if (obstacleData[Math.floor(index) - 3][1] > coord[1] || obstacleData[Math.floor(index) - 3][2] < coord[1]) {
return false;
}
}
}
return false
} function initAnimation() {
// 动画设置
timer = setInterval(() => {
// 小鸟速度和仰角调整
vh = vh - a;
option.series[0].data[0][1] += vh;
option.series[0].data[0][0] += vw;
option.series[0].symbolRotate = option.series[0].symbolRotate ? option.series[0].symbolRotate - 5 : 0; // 坐标系范围调整
option.xAxis.min += vw;
option.xAxis.max += vw; // 碰撞判断
const result = judgeCollision(option.series[0].data[0]) if(result) { // 产生碰撞后结束动画
endAnimation();
} myChart.setOption(option);
}, 25);
}
总结
echarts 提供了强大的图形绘制自定义能力,要使用好这种能力,一定要理解好数据坐标点和像素坐标点之间的转换逻辑,这是将数据具象到画布上的重要一步。
运用好这个功能,再也不怕产品提出奇奇怪怪的图表需求。
源码地址:https://github.com/foolmadao/echart-flappy-bird
没想到吧!这个可可爱爱的游戏居然是用 ECharts 实现的!的更多相关文章
- 【原创】这道Java基础题真的有坑!我也没想到还有续集。
前情回顾 自从我上次发了<这道Java基础题真的有坑!我求求你,认真思考后再回答.>这篇文章后.我通过这样的一个行文结构: 解析了小马哥出的这道题,让大家明白了这题的坑在哪里,这题背后隐藏 ...
- 没想到,Git居然有3种“后悔药”!
没想到,Git居然有后悔药! 你知道Git版本控制系统中都有哪些"后悔药"吗? 本文通过案例讲解git reset . git revert . git checkout在版本控制 ...
- 万万没想到!ModelArts与AppCube组CP了
摘要:嘘,华为云内部都不知道的秘密玩法,我悄悄告诉您! 双"魔"合璧庆双节 ↑开局一张图,故事全靠编 华为云的一站式开发平台ModelArts和应用魔方AppCube居然能玩到一起 ...
- 在做关于NIO TCP编程小案例时遇到无法监听write的问题,没想到只是我的if语句的位置放错了位置,哎,看了半天没看出来
在做关于NIO TCP编程小案例时遇到无法监听write的问题,没想到只是我的if语句的位置放错了位置,哎,看了半天没看出来 贴下课堂笔记: 在Java中使用NIO进行网络TCP套接字编程主要以下几个 ...
- centos clamav杀毒软件安装配置及查杀,没想到linux下病毒比windows还多!
centos clamav杀毒软件安装配置及查杀,没想到linux下病毒比windows还多! 一.手动安装 1.下载(官网) cd /soft wget http://www.clam ...
- 头条编程题 万万没想到之抓捕孔连顺 JavaScript
[编程题] 万万没想到之抓捕孔连顺 时间限制:1秒 空间限制:131072K 我叫王大锤,是一名特工.我刚刚接到任务:在字节跳动大街进行埋伏,抓捕恐怖分子孔连顺.和我一起行动的还有另外两名特工,我提议 ...
- 杀死众筹的N种方法:没想到山寨大军也参与了
众筹作为当下创业者筹集资金,将创意变为现实的最重要手段之一,正面临着越来越多的困难,甚至衍生出杀死众筹的N种方法.甚至这些方法还分为了两类,就众筹本身看,杀死它们的主要方法是:创业者卷钱跑路. ...
- 没想到 Google 排名第一的编程语言,为什么会这么火?
没想到吧,Python 又拿第一了! 在 Google 公布的编程语言流行指数中,Python 依旧是全球范围内最受欢迎的技术语言! 01 为什么 Python 会这么火? 核心还是因为企业需要用 ...
- 字节跳动:[编程题]万万没想到之聪明的编辑 Java
时间限制:1秒 空间限制:32768K 我叫王大锤,是一家出版社的编辑.我负责校对投稿来的英文稿件,这份工作非常烦人,因为每天都要去修正无数的拼写错误.但是,优秀的人总能在平凡的工作中发现真理.我发现 ...
随机推荐
- USART_GetITStatus()和USART_GetFlagStatus()的区别
USART_GetITStatus()和USART_GetFlagStatus()的区别 都是访问串口的SR状态寄存器,唯一不同是,USART_GetITStatus()会判断中断是否开启,如果没开启 ...
- (6) 结论,摘要与题目_Conclusion, Abstract, and Title【论文写作】
- Socket.io+Notification实现浏览器消息推送
前言 socket.io: 包含对websocket的封装,可实现服务端和客户端之前的通信.详情见官网(虽然是英文文档,但还是通俗易懂).Notification: Html5新特性,用于浏览器的桌面 ...
- CSS的inline、block与inline-block
基本知识点 行内元素一般是内容的容器,而块级元素一般是其他容器的容器,行内元素适合显示具体内容,而块级元素适合做布局. 块级元素(block):独占一行,对宽高的属性值生效:如果不给宽度,块级元素就默 ...
- AMS分析 -- 启动过程
一. AMS简介 AmS可以说是Android上层系统最核心的模块之一,其主要完成管理应用进程的生命周期以及进程的Activity,Service,Broadcast和Provider等. 从系统运行 ...
- Java中的反射以及简单运用(原理+例子)
Java反射 学习内容 1. 为什么要使用反射 2. 反射的概念 3. Java反射加载过程 4. 字节码对象理解 5. 获取字节码对象(.class)的三种方式 6. 反射常用API 8. 反射综合 ...
- WIN DLL劫持提权
WIN DLL劫持提权 原理: Windows程序启动的时候需要DLL.如果这些DLL 不存在,则可以通过在应用程序要查找的位置放置恶意DLL来提权.通常,Windows应用程序有其预定义好的搜索DL ...
- 前端框架小实验-在umi框架中以worker线程方式使用SQL.js的wasm
总述:在Win7环境下配置umijs框架,在框架中用worker线程方式使用SQL.js的wasm,在浏览器端实现数据的增删改查以及数据库导出导入. 一.安装node.js 1.Win7系统只支持no ...
- Spring-实现原理
探究SpringBoot实现原理 注意:必须完成SSM阶段源码解析部分的学习,链接:https://www.cnblogs.com/zwtblog/tag/源码/ 我们在前面的学习中切实感受到了Spr ...
- Kubernetes架构-图解