九度oj 题目1140:八皇后
- 题目描述:
-
会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2...b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
- 输入:
-
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)
- 输出:
-
输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
- 样例输入:
-
2
1
92
- 样例输出:
-
15863724
84136275#include <cstdio>
#include <cstdlib>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#define MAX 10
#define inf 1000000009
int mat[MAX][MAX];
int temp[MAX];
int ans[][MAX];
int cnt = ; bool isOk(int x, int y) {
int a = , b = ;
for(int i = ; i < ; i++) {
a = a + mat[x][i];
b = b + mat[i][y];
if(a >= || b >= ) {
return false;
}
}
for(int i = x - , j = y-; i >= && j >= ; i--, j--) {
if(mat[i][j] == ) {
return false;
}
}
for(int i = x - , j = y+; i >= && j < ; i--, j++) {
if(mat[i][j] == ) {
return false;
}
}
return true;
} void dfs(int n) {
if(n == ) {
cnt++;
for(int i = ; i < ; i++) {
ans[cnt][i] = temp[i];
}
return;
}
for(int i = ; i < ; i++) {
if(isOk(n,i)) {
mat[n][i] = ;
temp[n] = i+;
dfs(n+);
mat[n][i] = ;
}
}
} int main(int argc, char const *argv[])
{
int n;
//freopen("input.txt","r",stdin);
memset(mat, , sizeof(mat));
dfs();
while(scanf("%d",&n) != EOF) {
while(n--) {
int m;
scanf("%d",&m);
for(int i = ; i < ; i++) {
printf("%d",ans[m][i]);
}
puts("");
} }
return ;
}其实,判断是否可以放置的代码还可以利用temp,使其更简洁
#include <cstdio>
#include <string>
#include <cstring>
#define MAX 10
int mat[MAX][MAX];
int temp[MAX];
int ans[][MAX];
int cnt = ; bool isOk(int x, int y) {
for(int i = ; i < x; i++) {
if(temp[i]- == y) {
return false;
}
if(temp[i]-+ i == (x+y) || temp[i] - - i == (y-x)) {
return false;
}
}
return true;
} void dfs(int n) {
if(n == ) {
cnt++;
for(int i = ; i < ; i++) {
ans[cnt][i] = temp[i];
}
return;
}
for(int i = ; i < ; i++) {
if(isOk(n,i)) {
mat[n][i] = ;
temp[n] = i+;
dfs(n+);
mat[n][i] = ;
}
}
} int main(int argc, char const *argv[])
{
int n,m;
memset(mat, , sizeof(mat));
dfs();
while(scanf("%d",&n) != EOF) {
while(n--) {
scanf("%d",&m);
for(int i = ; i < ; i++) {
printf("%d",ans[m][i]);
}
puts("");
}
}
return ;
}
九度oj 题目1140:八皇后的更多相关文章
- 九度OJ 题目1384:二维数组中的查找
/********************************* * 日期:2013-10-11 * 作者:SJF0115 * 题号: 九度OJ 题目1384:二维数组中的查找 * 来源:http ...
- hdu 1284 关于钱币兑换的一系列问题 九度oj 题目1408:吃豆机器人
钱币兑换问题 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...
- 九度oj题目&吉大考研11年机试题全解
九度oj题目(吉大考研11年机试题全解) 吉大考研机试2011年题目: 题目一(jobdu1105:字符串的反码). http://ac.jobdu.com/problem.php?pid=11 ...
- 九度oj 题目1007:奥运排序问题
九度oj 题目1007:奥运排序问题 恢复 题目描述: 按要求,给国家进行排名. 输入: 有多组数据. 第一行给出国家数N,要求排名的国家数M,国家号 ...
- 九度oj 题目1087:约数的个数
题目链接:http://ac.jobdu.com/problem.php?pid=1087 题目描述: 输入n个整数,依次输出每个数的约数的个数 输入: 输入的第一行为N,即数组的个数(N<=1 ...
- 九度OJ题目1105:字符串的反码
tips:scanf,cin输入字符串遇到空格就停止,所以想输入一行字符并保留最后的"\0"还是用gets()函数比较好,九度OJ真操蛋,true?没有这个关键字,还是用1吧,还是 ...
- 九度oj题目1009:二叉搜索树
题目描述: 判断两序列是否为同一二叉搜索树序列 输入: 开始一个数n,(1<=n<=20) 表示有n个需要判断,n= 0 的时候输入结束. 接 ...
- 九度oj题目1002:Grading
//不是说C语言就是C++的子集么,为毛printf在九度OJ上不能通过编译,abs还不支持参数为整型的abs()重载 //C++比较正确的做法是#include<cmath.h>,cou ...
- 九度OJ题目1003:A+B
while(cin>>str1>>str2)就行了,多简单,不得不吐槽,九度的OJ真奇葩 题目描述: 给定两个整数A和B,其表示形式是:从个位开始,每三位数用逗号", ...
随机推荐
- P1216 [USACO1.5]数字三角形 Number Triangles
题目描述 观察下面的数字金字塔. 写一个程序来查找从最高点到底部任意处结束的路径,使路径经过数字的和最大.每一步可以走到左下方的点也可以到达右下方的点. 7 3 8 8 1 0 2 7 4 4 4 5 ...
- Oracle种常用性能监控SQL语句
--Oracle常用性能监控SQL语句 --1 SELECT * FROM SYS.V_$SQLAREA WHERE DISK_READS > 100; --2 监控事例的等待 SELECT E ...
- 洛谷 P1276 校门外的树(增强版)
题目描述 校门外马路上本来从编号0到L,每一编号的位置都有1棵树.有砍树者每次从编号A到B处连续砍掉每1棵树,就连树苗也不放过(记 0 A B ,含A和B):幸运的是还有植树者每次从编号C到D 中凡是 ...
- 使用javap分析Java的字符串操作
我们看这样一行简单的字符串赋值操作的Java代码. String a = "i042416"; 使用命令行将包含了这行代码的Java类反编译查看其字节码: javap -v con ...
- Java-NestedClass(Interface).
内部类(Nested Class) 内部类:即在一个类中还包含着另外一个类,一般是作为匿名类或者是使用数据隐藏时使用的.例子: //内部类 class Out{ private int age = 1 ...
- Shell脚本之for循环、while循环,if语句、case语句
1. for循环一般格式: 格式1: for((条件)) do 动作 done 格式2: for 变量名 in 范围 do 动作 done1234567891011121314实验:##1. 输出数字 ...
- false - (失败的)什么都不做
总览 (SYNOPSIS) false [忽略命令行参数] false OPTION 描述 (DESCRIPTION) 程序 结束 时, 产生 表示 失败 的 状态码. 下列的 选项 没有 简写 形式 ...
- CAP 可用性理解
从容灾角度看可用性. 多机同时返回. 主通过 heart-beat 脑裂. 用 paxos. 性能远距离. 对整体压力较大. 从用户体验的角度看单数据可用性: 不考虑城市灾备的情况发生.只有单机房的 ...
- 低性能3张图片轮播React组件
import React from 'react'; import {getSwipeWay} from '../utils/swipe'; class Carousel extends React. ...
- 拖拽大图轮播pc 移动兼容
<!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF-8&quo ...