链接:

https://codeforces.com/contest/1182/problem/A

题意:

You have a given integer n. Find the number of ways to fill all 3×n tiles with the shape described in the picture below. Upon filling, no empty spaces are allowed. Shapes cannot overlap.

This picture describes when n=4. The left one is the shape and the right one is 3×n tiles.

图片复制不了

思路:

给定形状只能再n为偶数的情况下完全覆盖,所以奇数不用考虑,同时,每两列为一组,一组有两种。

答案就是2^(n/2)。

代码:

#include <bits/stdc++.h>
using namespace std; int main()
{
int n;
cin >> n;
int res = 1;
if (n%2 == 1)
cout << 0 << endl;
else
{
for (int i = 1;i <= n/2;i++)
res *= 2;
cout << res << endl;
} return 0;
}

Codeforces Round #566 (Div. 2) A. Filling Shapes的更多相关文章

  1. Codeforces Round #566 (Div. 2)

    Codeforces Round #566 (Div. 2) A Filling Shapes 给定一个 \(3\times n\) 的网格,问使用 这样的占三个格子图形填充满整个网格的方案数 如果 ...

  2. Codeforces Round #566 (Div. 2)题解

    时间\(9.05\)好评 A Filling Shapes 宽度为\(3\),不能横向填 考虑纵向填,长度为\(2\)为一块,填法有两种 如果长度为奇数则显然无解,否则\(2^{n/2}\) B Pl ...

  3. Codeforces Round #566 (Div. 2) C. Beautiful Lyrics

    链接: https://codeforces.com/contest/1182/problem/C 题意: You are given n words, each of which consists ...

  4. Codeforces Round #566 (Div. 2) B. Plus from Picture

    链接: https://codeforces.com/contest/1182/problem/B 题意: You have a given picture with size w×h. Determ ...

  5. Codeforces Round #589 (Div. 2) B. Filling the Grid

    链接: https://codeforces.com/contest/1228/problem/B 题意: Suppose there is a h×w grid consisting of empt ...

  6. Product Oriented Recurrence(Codeforces Round #566 (Div. 2)E+矩阵快速幂+欧拉降幂)

    传送门 题目 \[ \begin{aligned} &f_n=c^{2*n-6}f_{n-1}f_{n-2}f_{n-3}&\\ \end{aligned} \] 思路 我们通过迭代发 ...

  7. Codeforces Round #566 (Div. 2)C(字符串,SET)

    #include<bits/stdc++.h>using namespace std;string s[100007];set<int>st[100007][7];int t[ ...

  8. Codeforces Round #589 (Div. 2) Another Filling the Grid (dp)

    题意:问有多少种组合方法让每一行每一列最小值都是1 思路:我们可以以行为转移的状态 附加一维限制还有多少列最小值大于1 这样我们就可以不重不漏的按照状态转移 但是复杂度确实不大行(减了两个常数卡过去的 ...

  9. Codeforces Round #633 (Div. 2)

    Codeforces Round #633(Div.2) \(A.Filling\ Diamonds\) 答案就是构成的六边形数量+1 //#pragma GCC optimize("O3& ...

随机推荐

  1. canvas练习单个矩形形变

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. kubectl工具管理应用生命周期

    ######kubectl管理工具###### [root@k8s-master dashboard]# kubectl get pod NAME READY STATUS RESTARTS AGE ...

  3. 创建maven多模块项目

    一:创建父项目

  4. ACM学习历程—BestCoder 2015百度之星资格赛1001 大搬家(递推 && 组合数学)

    Problem Description 近期B厂组织了一次大搬家,所有人都要按照指示换到指定的座位上.指示的内容是坐在位置i 上的人要搬到位置j 上.现在B厂有N 个人,一对一到N 个位置上.搬家之后 ...

  5. Codefoeces 734F. Anton and School 数学

    Codefoeces 734F 题目大意: 给定两个正整数序列\(b,c\)构造一个正整数序列\(a\)使其满足 \[ \left\{ \begin{array}{} b_i=(a_i\text{ a ...

  6. 洛谷P3252 [JLOI2012]树

    题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不 ...

  7. configured to save RDB snapshots, but is currently not able to persist o...

    Redis问题 MISCONF Redis is configured to save RDB snapshots, but is currently not able to persist on d ...

  8. bzoj 3680(洛谷1337) 吊打XXX——模拟退火

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3680 https://www.luogu.org/problemnew/show/P1337 ...

  9. AtCoder Regular Contest 068E:Snuke Line

    题目传送门:https://arc068.contest.atcoder.jp/tasks/arc068_c 题目翻译 直线上有\(0-m\)这\(m+1\)个点,一共有\(m\)辆火车.第\(i\) ...

  10. 在visualstudio中使用Qt

    1.  说明 在此说明一下IDE跟封装的之间的关系,他们之间本质上来说没有关系,是可以多对对的关系. Qt开发是个比较泛的概念,Qt是由很多一系列类组成的整体,就像boost里面也有很多的类,而boo ...