codeforces 587B B. Duff in Beach(dp)
题目链接:
2 seconds
256 megabytes
standard input
standard output
While Duff was resting in the beach, she accidentally found a strange array b0, b1, ..., bl - 1 consisting of l positive integers. This array was strange because it was extremely long, but there was another (maybe shorter) array, a0, ..., an - 1 that b can be build from a with formula: bi = ai mod n where a mod b denoted the remainder of dividing a by b.

Duff is so curious, she wants to know the number of subsequences of b like bi1, bi2, ..., bix (0 ≤ i1 < i2 < ... < ix < l), such that:
- 1 ≤ x ≤ k
- For each 1 ≤ j ≤ x - 1,

- For each 1 ≤ j ≤ x - 1, bij ≤ bij + 1. i.e this subsequence is non-decreasing.
Since this number can be very large, she want to know it modulo 10^9 + 7.
Duff is not a programmer, and Malek is unavailable at the moment. So she asked for your help. Please tell her this number.
The first line of input contains three integers, n, l and k (1 ≤ n, k, n × k ≤ 10^6 and 1 ≤ l ≤ 10^18).
The second line contains n space separated integers, a0, a1, ..., an - 1 (1 ≤ ai ≤ 10^9 for each 0 ≤ i ≤ n - 1).
Print the answer modulo 1 000 000 007 in one line.
3 5 3
5 9 1
10
5 10 3
1 2 3 4 5
25
In the first sample case,
. So all such sequences are:
,
,
,
,
,
,
,
,
and
.
题意:
给一个数组a,然后循环产生长为l的数组,问满足题目给的条件的子序列有多少个;满足的条件为要求不单调递减,而且最长为k,且每相邻的两个来自相邻的段;
思路:
dp[i][j]表示以第i个数结尾的长为j的子序列的个数;转移方程为dp[i][j]=∑dp[x][j-1](满足a[x]<=a[i]所有x);由于n,k的范围太大,所以可以取一维的数组;
dp[i]=∑dp[x](a[x]<=a[i])每层j求完就把答案更新到ans中,还有一个难点就是l%n>0的时候,有前边记录的dp[i]可以把l%n部分求出来;
AC代码:
/*
2014300227 587B - 19 GNU C++11 Accepted 311 ms 33484 KB
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e6+;
int n,k,b[N],vis[N];
ll l,dp[N],temp[N];
const ll mod=1e9+;
struct node
{
friend bool operator< (node x,node y)
{
if(x.a==y.a)return x.pos<y.pos;
return x.a<y.a;
}
int a,pos;
};
node po[N];
int main()
{ cin>>n>>l>>k;
for(int i=;i<n;i++)
{
scanf("%d",&po[i].a);
po[i].pos=i;
}
sort(po,po+n);
po[n].a=po[n-].a+;
for(int i=n-;i>=;i--)
{
if(po[i].a==po[i+].a)vis[i]=vis[i+];//vis[i]记录与a[i]相等的最后一个数的位置;
else vis[i]=i;
b[po[i].pos]=i;//把位置还原
}
for(int i=;i<n;i++)
{
dp[i]=;
}
ll ans=l,sum,fn=(ll)n;
ans%=mod;
for(int i=;i<=k;i++)
{
temp[]=dp[];
for(int j=;j<n;j++)
{
temp[j]=temp[j-]+dp[j];//temp[j]用来过渡;
temp[j]%=mod;
}
sum=;
for(int j=;j<n;j++)
{
dp[j]=temp[vis[j]];
sum+=dp[j];
sum%=mod;
}
if(l%fn==)
{
if(i<=l/fn)
{
ans+=((l/fn-i+)%mod)*sum;
ans%=mod;
}
}
else
{
if(i<=l/fn)
{
ans+=((l/fn-i+)%mod)*sum;
ans%=mod;
sum=;
for(int j=;j<l%fn;j++)
{
sum+=dp[b[j]];
sum%=mod;
}
ans+=sum;
ans%=mod;
}
else if(i==l/fn+)
{
sum=;
for(int j=;j<l%fn;j++)
{
sum+=dp[b[j]];
sum%=mod;
}
ans+=sum;
ans%=mod;
}
}
}
cout<<ans%mod<<"\n";
return ;
}
codeforces 587B B. Duff in Beach(dp)的更多相关文章
- Codeforces Round #326 (Div. 2) D. Duff in Beach dp
D. Duff in Beach Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/588/probl ...
- [Codeforces 865C]Gotta Go Fast(期望dp+二分答案)
[Codeforces 865C]Gotta Go Fast(期望dp+二分答案) 题面 一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每 ...
- [CodeForces - 1225E]Rock Is Push 【dp】【前缀和】
[CodeForces - 1225E]Rock Is Push [dp][前缀和] 标签:题解 codeforces题解 dp 前缀和 题目描述 Time limit 2000 ms Memory ...
- [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT)
[Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i ...
- codeforces Diagrams & Tableaux1 (状压DP)
http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...
- Codeforces 467C George and Job(DP)
题目 Source http://codeforces.com/contest/467/problem/C Description The new ITone 6 has been released ...
- Codeforces Beta Round #17 C. Balance DP
C. Balance 题目链接 http://codeforces.com/contest/17/problem/C 题面 Nick likes strings very much, he likes ...
- codeforces 258div2 A Game With Sticks(DP)
题目链接:http://codeforces.com/contest/451/problem/A 解题报告:有n跟红色的棍子横着放,m根蓝色的棍子竖着放,它们形成n*m个交点,两个人轮流在里面选择交点 ...
- codeforces 597C (树状数组+DP)
题目链接:http://codeforces.com/contest/597/problem/C 思路:dp[i][j]表示长度为i,以j结尾的上升子序列,则有dp[i][j]= ∑dp[i-1][k ...
随机推荐
- 阿里云服务器教程–SSH 登录时出现如下错误:Host key verification failed
注意:本文相关 Linux 配置及说明已在 CentOS 6.5 64 位操作系统中进行过测试.其它类型及版本操作系统配置可能有所差异,具体情况请参阅相应操作系统官方文档. 问题描述 使用 SSH 登 ...
- VueJS字符串反转:String.reverse()
HTML <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <titl ...
- Orcad CIS怎么批量修改字体大小
选中DSN,右键,design properties, schematic design,选择design properties.
- python学习(二)python中的核心数据类型
数据类型是编程语言中的很重要的一个组成部分,我所知道的有数据类型的好处有:在内存中存放的格式知道,规定了有哪几种可用的操作. 我的埋点:为什么要有数据类型 那么python中的数据类型有哪几种呢? 对 ...
- 【Android】图片(文件)上传的请求分析结构
怎么在android中上传文件,即怎么用Java向服务器上传文件.上传图片,这是个老问题了,在网上能搜到现成的代码,很多朋友用起来也比较熟了,但是为什么这么写,可能很多朋友并不清楚,这篇文章就来分析一 ...
- pulsar学习笔记1:helloworld
pulsar号称是下一代的消息系统,这二年风光无限,大有干掉kafka的势头,如果想快速体验下,可以按以下步骤在本地搭建一个单机版本:(mac环境+jdk8) 一. 下载 wget https://w ...
- ICMP控制报文协议
1.引言 ICMP经常被认为是IP层的一个组成部分.它传递差错以及其他需要注意的信息.ICMP报文通常被IP层或更高层 协议(TCP或UDP)使用.一些ICMP报文把差错报文返回给用户进程.ICMP报 ...
- 使用 Django1.11搭建blog项目
使用Django搭建blog项目 简单设置: http://blog.csdn.net/w_e_i_/article/details/70761604 模板渲染: http://blog.csdn.n ...
- android菜鸟学习笔记17----Android数据存储(一)文件读写
假如有如下需求,要求能够记录用户输入的用户名和密码,下次登录时,能直接获取之前保存的用户名密码,并在相应的EditText中显示. 要保存用户输入的数据,最先想到的应该就是文件读写了. 通过对andr ...
- The goroutine scheduler is not preemptive.
go - Why is time.sleep required to run certain goroutines? - Stack Overflow https://stackoverflow.co ...