[ZZOJ#31]类欧几里得
[ZZOJ#31]类欧几里得
试题描述
这是一道模板题。
给出 \(a, b, c, n\),请你求出 \(\sum_{x=0}^n{\lfloor \frac{a \cdot x + b}{c} \rfloor}\)
输入
一行四个正整数 \(a, b, c, n\)。
输出
一个整数表示答案。
输入示例1
10 7 3 3
输出示例1
28
输入示例2
36976101 240442820 735275034 66441189
输出示例2
110998229606855
数据规模及约定
对于 \(50\%\) 的数据,有 \(n \le 10^7\)
对于 \(100\%\) 的数据,保证 \(a, b, c, n \le 10^9\),答案不会超过 \(9223372036854775807\)(int64 最大值)。
题解
以前出出来的,发现忘记写博客了,来补个坑。
类欧模板。讲解随便就能百度到。
主要思路就是数形结合,将此题转化成“求直线下方整点个数”。对于 \(c \ge a\) 或 \(b \ge a\) 的情况,将整数部分 \(\lfloor \frac{c}{a} \rfloor\) 和 \(\lfloor \frac{b}{a} \rfloor\) 先算出来,再考虑补上没记上的部分,于是将问题变成了 \(b, c < a\) 的情况。对于这个情况,就是求一个直角梯形内部整点个数(这个直角梯形 \(y\) 轴上结局和斜率都小于 \(1\) 的性质保证后面的子问题规模会缩小),我们考虑不按 \(x\) 坐标枚举,变成按 \(y\) 坐标枚举,推一推式子发现能转化成子问题。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define rep(i, s, t) for(int i = (s); i <= (t); i++)
#define dwn(i, s, t) for(int i = (s); i >= (t); i--)
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
}
#define LL long long
LL solve(LL a, LL b, LL c, LL n) {
if(!n) return b / c;
if(n < 0) return 0;
if(a >= c || b >= c) return b / c * (n + 1) + a / c * n * (n + 1) / 2 + solve(a % c, b % c, c, n);
LL m = (a * n + b) / c;
return n * m + m - solve(c, a - b + c - 1, a, m - 1);
}
int main() {
int a = read(), b = read(), c = read(), n = read();
printf("%lld\n", solve(a, b, c, n));
return 0;
}
[ZZOJ#31]类欧几里得的更多相关文章
- 算法马拉松35 E 数论只会Gcd - 类欧几里得 - Stern-Brocot Tree - 莫比乌斯反演
题目传送门 传送门 这个官方题解除了讲了个结论,感觉啥都没说,不知道是因为我太菜了,还是因为它真的啥都没说. 如果 $x \geqslant y$,显然 gcd(x, y) 只会被调用一次. 否则考虑 ...
- bzoj2187 fraction&&hdu3637 Find a Fraction——类欧几里得
bzoj2187 多组询问,每次给出 $a, b, c, d$,求满足 $\frac{a}{b} < \frac{p}{q} < \frac{c}{d}$ 的所有二元组 $(p, q)$ ...
- 类欧几里得模板 p5170
//类欧几里得的模板题 p5170 //求这三个式子: //第一个跟后两个没关联 //后两个跟其余两个都有关联: #include<cstdio> #include<algorith ...
- 2019.02.06 bzoj2987: Earthquake(类欧几里得)
传送门 题意简述:求满足ax+by+c≤0ax+by+c\le0ax+by+c≤0的二元组(x,y)(x,y)(x,y)对数. 思路: 类欧几里得算法模板题. 把式子变化一下变成:求满足0≤y≤−ax ...
- JZOJ3492数数&&GDOI2018超级异或绵羊——位&&类欧几里得
JZOJ3492 数数(count) 我们知道,一个等差数列可以用三个数A,B,N表示成如下形式: B+A,B+2A,B+3A⋯B+NA ztxz16想知道对于一个给定的等差数列,把其中每一项用二进 ...
- 2019HDU多校第五场A fraction —— 辗转相除法|类欧几里得
题目 设 $ab^{-1} = x(mod \ p)$,给出 $x,p$,要求最小的 $b$,其中 $0< a < b, \ 1 < x<p,\ 3 \leq x\leq {1 ...
- Kattis - itsamodmodmodmodworld It's a Mod, Mod, Mod, Mod World (类欧几里得)
题意:计算$\sum\limits_{i=1}^n[(p{\cdot }i)\bmod{q}]$ 类欧模板题,首先作转化$\sum\limits_{i=1}^n[(p{\cdot}i)\bmod{q} ...
- 2019牛客多校九 I. KM and M (类欧几里得)
大意: 给定$N,M$, 求$\sum\limits_{K=1}^N \text{(KM)&M}$ 考虑第$i$位的贡献, 显然为$\lfloor\frac{KM}{2^i}\rfloor$为 ...
- BZOJ3817 清华集训2014 Sum 类欧几里得
传送门 令\(\sqrt r = x\) 考虑将\(-1^{\lfloor d \sqrt r \rfloor}\)魔改一下 它等于\(1-2 \times (\lfloor dx \rfloor \ ...
随机推荐
- 响应式网站布局要适应的当下主流手机屏幕的各个版本的分辨率有哪些(media query)
CSS宽有14种: 320.360.375.384.400.414.533.600.768.800.853.1024.1280.1366 CSS高有16种: 360.480.533.568.569.6 ...
- 2018.5.22 Oracle安装配置在虚拟机中外部电脑连接服务
1.拷贝老师的集成文件(win系统和oracle服务) 2.安装虚拟机,并且打开镜像文件 3.启动监听程序(实例服务[自动].监听服务) 4.查看虚拟机ip,此ip要主机ip在同一个网段 5.检查虚拟 ...
- 在DOS界面下快速进入目录的技巧
在DOS界面如果想进入某一目录还是比较困难的,尤其是有长目录名和中文目录名的时候. 比如:要进入“D:/工具箱/杀毒软件”这个目录. 1.在Windows下进入这个目录. 2.在地址栏输入 C:/WI ...
- 微信小程序text标签
最近在做小程序,使用<text>标签的时候发现里面的文本text-family不生效, 经过试验,发现直接在text标签的class设置不生效,可以在外层包一个父元素就可以设置了. < ...
- python笔记-dict字典的方法
#!/usr/bin/env python #-*- coding:utf-8 -*- #打印0001-9999的数字 for i in range(9999): s = "%04d&quo ...
- WebSocket 详解
WebSocket 出现前 构建网络应用的过程中,我们经常需要与服务器进行持续的通讯以保持双方信息的同步.通常这种持久通讯在不刷新页面的情况下进行,消耗一定的内存资源常驻后台,并且对于用户不可见.在 ...
- 第八篇:ORM框架SQLAlchemy 了解知识
一 介绍 SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取 ...
- PHP如何严格控制session过期时间
第一种回答 那么, 最常见的一种回答是: 设置Session的过期时间, 也就是session.gc_maxlifetime, 这种回答是不正确的, 原因如下: 1. 首先, 这个PHP是用一定的概率 ...
- Flask初学者:Python虚拟环境,Flask安装,helloworld,run方法
一.Python虚拟环境: 作用:使Python框架的不同版本可以在同一台电脑上运行.如果在电脑上全局(C盘或者其他目录)安装Flask(或其他Python框架),当你使用其他版本的Flask(比如有 ...
- 20181225 基于TCP/IP和基于UDP/IP的套接字编程
一.TCP/IP的套接字编程 服务器端代码: import socketserver = socket.socket() # 默认是基于TCP# 基于TCP的对象serve=socket.sock ...