OpenCV机器学习库函数--SVM
svm分类算法在opencv3中有了很大的变动,取消了CvSVMParams这个类,因此在参数设定上会有些改变。
opencv中的svm分类代码,来源于libsvm。
#include "opencv2/opencv.hpp"
using namespace cv;
using namespace cv::ml; int main(int, char**)
{
int width = , height = ;
Mat image = Mat::zeros(height, width, CV_8UC3); //创建窗口可视化 // 设置训练数据
int labels[] = { , -, , ,-,,-,,-,- };
Mat labelsMat(, , CV_32SC1, labels); float trainingData[][] = { { , }, { , }, { , }, { , }, { , },
{ , }, { , } , { , } , { , } , { , } };
Mat trainingDataMat(, , CV_32FC1, trainingData); // 创建分类器并设置参数
Ptr<SVM> model =SVM::create();
model->setType(SVM::C_SVC);
model->setKernel(SVM::LINEAR); //核函数 //设置训练数据
Ptr<TrainData> tData =TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat); // 训练分类器
model->train(tData); Vec3b green(, , ), blue(, , );
// Show the decision regions given by the SVM
for (int i = ; i < image.rows; ++i)
for (int j = ; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(, ) << j, i); //生成测试数据
float response = model->predict(sampleMat); //进行预测,返回1或-1 if (response == )
image.at<Vec3b>(i, j) = green;
else if (response == -)
image.at<Vec3b>(i, j) = blue;
} // 显示训练数据
int thickness = -;
int lineType = ;
Scalar c1 = Scalar::all(); //标记为1的显示成黑点
Scalar c2 = Scalar::all(); //标记成-1的显示成白点
//绘图时,先宽后高,对应先列后行
for (int i = ; i < labelsMat.rows; i++)
{
const float* v = trainingDataMat.ptr<float>(i); //取出每行的头指针
Point pt = Point((int)v[], (int)v[]);
if (labels[i] == )
circle(image, pt, , c1, thickness, lineType);
else
circle(image, pt, , c2, thickness, lineType); } imshow("SVM Simple Example", image);
waitKey(); }
结果:

如果只是简单的点分类,svm的参数设置就这么两行就行了,但如果是其它更为复杂的分类,则需要设置更多的参数。
Ptr<SVM> svm = SVM::create(); //创建一个分类器
svm->setType(SVM::C_SVC); //设置svm类型
由于opencv中的svm分类算法是根据libsvm改写而来的,libsvm是台湾一学者编写的matlab版本的svm算法,所以参数的设定的也大致相同。svm类型除了C_SVC之外,还有NU_SVC,ONE_CLASS,EPS_SVR,NU_SVR.
还有其它的参数,如
svm->setKernel(SVM::POLY); //设置核函数;
svm->setDegree(0.5);
svm->setGamma(1);
svm->setCoef0(1);
svm->setNu(0.5);
svm->setP(0);
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1000, 0.01));
svm->setC(C);
如果前面svm类型选择的不同,后面的参数设置也不同,具体的设置可以了解一下libsvm的参数设置。具体介绍可参照 :libsvm参数说明
setTermCriteria是用来设置算法的终止条件, SVM训练的过程就是一个通过 迭代 方式解决约束条件下的二次优化问题,这里我们指定一个最大迭代次数和容许误差,以允许算法在适当的
条件下停止计算
参考: 在opencv3中实现机器学习之:利用svm(支持向量机)分类
支持向量机(SVM)介绍 (opencv教程)
OpenCV机器学习库函数--SVM的更多相关文章
- OpenCV中的SVM參数优化
SVM(支持向量机)是机器学习算法里用得最多的一种算法.SVM最经常使用的是用于分类,只是SVM也能够用于回归,我的实验中就是用SVM来实现SVR(支持向量回归). 对于功能这么强的算法,opencv ...
- OpenCV中的SVM参数优化
OpenCV中的SVM参数优化 svm参数优化opencv SVMSVR参数优化CvSVMopencv CvSVM SVM(支持向量机)是机器学习算法里用得最多的一种算法.SVM最常用的 ...
- opencv中的SVM图像分类(二)
opencv中的SVM图像分类(二) 标签: svm图像 2015-07-30 08:45 8296人阅读 评论(35) 收藏 举报 分类: [opencv应用](5) 版权声明:本文为博主原创文 ...
- 机器学习——支持向量机SVM
前言 学习本章节前需要先学习: <机器学习--最优化问题:拉格朗日乘子法.KKT条件以及对偶问题> <机器学习--感知机> 1 摘要: 支持向量机(SVM)是一种二类分类模型, ...
- 【机器学习】svm
机器学习算法--SVM 目录 机器学习算法--SVM 1. 背景 2. SVM推导 2.1 几何间隔和函数间隔 2.2 SVM原问题 2.3 SVM对偶问题 2.4 SMO算法 2.4.1 更新公式 ...
- 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...
- coursera机器学习-支持向量机SVM
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...
- 数学之路(3)-机器学习(3)-机器学习算法-SVM[7]
SVM是新近出现的强大的数据挖掘工具,它在文本分类.手写文字识别.图像分类.生物序列分析等实际应用中表现出非常好的性能.SVM属于监督学习算法,样本以属性向量的形式提供,所以输入空间是Rn的子集. 图 ...
- 机器学习算法 --- SVM (Support Vector Machine)
一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的 ...
随机推荐
- 使用Jmeter做性能测试
上周刚刚做完项目的性能测试.今天整理和总结一下,随便分享给大家. 首页呢,测试前,我们是有明确的性能指标的,而且测试环境和数据都已准备好,业务分析.场景分析大家根据自己的项目系统进行分析设计,我们选用 ...
- Mac Xnip 截图软件快捷键设置
点击 Shortcut 后输入你需要的截图快捷键
- Halcon17 Linux 下载
Halcon17 Linux 下载地址:http://www.211xun.com/download_page_10.html HALCON 17 是一套机器视觉图像处理库,由一千多个算子以及底层的数 ...
- [状态更新]MSE三个月快速复习计划,成功考上复旦软工
最后更新,6月21日收到录取通知书啦,感谢当初不曾放弃的自己: 更新一下状态: 3.3日 分数出来了,过了复试线. 最初写这篇博客的时候,是希望自己能够每天或者至少每周更新下自己的复习状态,这样能够确 ...
- ServletConfig和ServletContext 区别
ServletConfig和ServletContext 1.ServletContext在整个web应用程序生命周期内存在,用来保存全局对象,整个web应用都可以使用其获取context参数.当 ...
- iOS属性文字NSAttributedString
它本身是一个Foundation框架的类, 但如果要使用它主要用到了UIKit框架中的NSAttributedString中的一些常量字符串 ----------------------------- ...
- BZOJ 1036: [ZJOI2008]树的统计Count(树链剖分)
树的统计CountDescription一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改 ...
- 调试Java代码(Eclipse)汇总
Java 10个调试技巧(基础❤❤❤❤❤) Eclipse断点调试(和上一篇基本类似,补充❤❤) 使用Eclipse开发和调试java程序(从安装eclipse开始,特别细,有设置条件断点,回退的具体 ...
- include和require的区别误区
面试时总会被问到include和require的区别,回答的时候一般也是有以下几种区别: 1.include引入文件的时候,如果碰到错误,会给出警告,并继续运行下边的代码. require引入文件的时 ...
- Vue的this.$root.Bus.$on事件被多次触发、多次监听的问题
前端vue项目中,各个组件(非父子关系也可)之间可以通过Bus进行事件通信. main.js中: import Vue from 'vue' const Bus = new Vue(); const ...