Description:

共\(T \le 5 \times 10^4\)组询问, 每组询问给定\(n\)和\(m\), 请你求出

\[\sum_{i = 1}^n \sum_{j = 1}^m \sigma_0 (ij)
\]

Solution:

先给出一个结论:

\[\sigma_0(ij) = \sum_{a | i} \sum_{b | j} [\gcd(a, b) = 1]
\]

证明: 我们令\(i = p_1^{a_1} p_2^{a_2} \cdots\), \(j = p_1^{b_1} p_2^{b_2} \cdots\), \(d | ij\)且\(d = p_1^{c_1} p_2^{c_2} \cdots\), 则\(c_n \le a_n + b_n\).

考虑如何不重复地统计每一个\(d\): 令\(c_n = A_n + B_n\), 其中\(A_n\)和\(B_n\)分别为\(i\)和\(j\)对\(c_n\)的贡献, 则我们要求

\[\begin{cases}
B_n = 0 & A_n < a_n \\
B_n \ge 0 & A_n = a_n
\end{cases}
\]

这样一来, \(c_n\)的表示形式就变成唯一的了, 因而不会被重复统计. 我们再考虑如何统计这样的\(A_n\)和\(B_n\): 我们令\(A_n' = a_n - A_n\), 则约束条件变为

\[\begin{cases}
B_n = 0 & A_n' \ne 0 \\
B_n \ge 0 & A_n' = 0
\end{cases}
\]

等价于\(\gcd(A_n', B_n) = 1\).

因此得证.

好吧, 假如看不懂上面的这一些证明, 就这么想吧: \(i\)表示\(a\)中不取多少, \(j\)表示\(b\)中取多少, 只要保证\(\gce(a, b) = 1\), 即不会重复统计.

因此我们考虑原题的式子

\[\begin{aligned}
\sum_{i = 1}^n \sum_{j = 1}^m \sigma_0(ij) &= \sum_{i = 1}^n \sum_{j = 1}^m \sum_{a | i} \sum_{b | j} [\gcd(a, b) = 1] \\
&= \sum_{i = 1}^n \sum_{j = 1}^m \sum_{a | i} \sum_{b | j} \sum_{d | \gcd(a, b)} \mu(d) \\
&= \sum_{i = 1}^n \sum_{j = 1}^m \sum_{d | \gcd(i, j)} \mu(d) \sigma_0(\frac i d) \sigma_0(\frac j d) \\
&= \sum_{d = 1}^n \sum_{i = 1}^{\lfloor \frac n d \rfloor} \sum_{j = 1}^{\lfloor \frac m d \rfloor} \mu(d) \sigma_0(i) \sigma_1(j) \\
&= \sum_{d = 1}^n \mu(d) \sum_{i = 1}^{\lfloor \frac n d \rfloor} \sigma_0(i) \sum_{j = 1}^{\lfloor \frac m d \rfloor} \sigma_0(j)
\end{aligned}
\]

分块处理后半部分即可.

时间复杂度: 预处理\(O(n)\), 单次询问\(O(n^\frac 1 2)\)

#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm> using namespace std;
namespace Zeonfai
{
inline int getInt()
{
int a = 0, sgn = 1; char c;
while (! isdigit(c = getchar())) if (c == '-') sgn *= -1;
while (isdigit(c)) a = a * 10 + c - '0', c = getchar();
return a * sgn;
}
}
const int N = (int)5e4, MOD = (int)1e9;
typedef int arr[N + 7];
typedef long long Larr[N + 7];
int tot;
arr isNotPrime, prm, mu, minDivisor, minDivisorDegree, sgm;
Larr a, b, c;
inline void initialize()
{
memset(isNotPrime, 0, sizeof(isNotPrime));
tot = 0;
sgm[1] = mu[1] = 1;
for (int i = 2; i <= N; ++ i)
{
if (! isNotPrime[i])
{
prm[tot ++] = i;
mu[i] = -1;
minDivisor[i] = i;
minDivisorDegree[i] = 1;
sgm[i] = 2;
}
for (int j = 0; j < tot && i * prm[j] <= N; ++ j)
{
int x = i * prm[j]; isNotPrime[x] = 1;
if (i % prm[j])
{
mu[x] = - mu[i];
minDivisor[x] = prm[j];
minDivisorDegree[x] = 1;
sgm[x] = sgm[i] * 2;
}
else
{
mu[x] = 0;
minDivisor[x] = minDivisor[i] * prm[j];
minDivisorDegree[x] = minDivisorDegree[i] + 1;
sgm[x] = sgm[i / minDivisor[i]] * (minDivisorDegree[x] + 1);
}
}
}
a[0] = b[0] = c[0] = 0;
for (int i = 1; i <= N; ++ i) a[i] = a[i - 1] + sgm[i], b[i] = a[i] * a[i], c[i] = c[i - 1] + mu[i];
}
int main()
{
using namespace Zeonfai;
initialize();
int T = getInt();
for (int cs = 0; cs < T; ++ cs)
{
int n = getInt(), m = getInt();
long long ans = 0;
int L = 1;
while (L <= min(n, m))
{
int R = min(n / (n / L), m / (m / L));
ans = ans + a[n / L] * a[m / L] * (c[R] - c[L - 1]);
L = R + 1;
}
printf("%lld\n", ans);
}
}

SDOI 2015 约束个数和的更多相关文章

  1. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  2. [SDOI 2015]约数个数和

    Description  设d(x)为x的约数个数,给定N.M,求 $\sum^N_{i=1}\sum^M_{j=1}d(ij)$ Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试 ...

  3. [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT)

    [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数 ...

  4. 「BZOJ 3994」「SDOI 2015」约数个数和「莫比乌斯反演」

    题意 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\). 题解 首先证个公式: \[d(ij) = \sum_{x|i}\sum_ ...

  5. 【SDOI 2015】约数个数和

    Problem Description 设 \(d(x)\) 为 \(x\) 的约数个数,给定 \(N\).\(M\),求 \[ \sum_{i=1}^N \sum_{j=1}^M d(ij) \] ...

  6. 【搜索】BZOJ 3990: 【Sdoi 2015】排序

    3990: [SDOI2015]排序 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 336  Solved: 164[Submit][Status][ ...

  7. BZOJ 3990 [SDOI 2015] 排序 解题报告

    这个题哎呀...细节超级多... 首先,我猜了一个结论.如果有一种排序方案是可行的,假设这个方案是 $S$ . 那么我们把 $S$ 给任意重新排列之后,也必然可以构造出一组合法方案来. 于是我们就可以 ...

  8. BZOJ 3992 [SDOI 2015] 序列统计 解题报告

    这个题最暴力的搞法就是这样的: 设 $Dp[i][j]$ 为前 $i$ 个数乘积为 $j$ 的方案数. 转移的话就不多说了哈... 当前复杂度 $O(nm^2)$ 注意到,$M$ 是个质数,就说明 $ ...

  9. [SDOI 2015]序列统计

    Description 题库链接 给出集合 \(S\) ,元素都是小于 \(M\) 的非负整数.问能够生成出多少个长度为 \(N\) 的数列 \(A\) ,数列中的每个数都属于集合 \(S\) ,并且 ...

随机推荐

  1. [转]Git for windows 下vim解决中文乱码的有关问题

    Git for windows 下vim解决中文乱码的问题 原文链接:Git for windows 下vim解决中文乱码的有关问题 1.右键打开Git bash: 2.cd ~ 3.vim .vim ...

  2. wap html5播放器和直播开发小结

    此文已由作者吴家联授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 去年年中的时候,借着产品改版的机会,将之前的h5播放器好好整理重构了一番.之前的h5播放器较为简陋,有几个大 ...

  3. Careercup - Microsoft面试题 - 5799446021406720

    2014-05-12 07:17 题目链接 原题: Given below is a tree/trie A B c D e F a<b<e<>>c<>d&l ...

  4. Python 拓展之特殊函数(lambda 函数,map 函数,filter 函数,reduce 函数)

    写在之前 今天给大家介绍几个比较特殊的函数,他们具有函数式编程的特点,有人将它们视为 Python 可进行 "函数式编程" 的见证,至于什么是函数式编程,不是本篇文章的重点,感兴趣 ...

  5. 菜鸟之路——git学习及GitHub的使用

    首先,感谢廖雪峰老师的git教程 https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 ...

  6. Linux下MySQL c++ connector示例

    最近在学习数据库的内容,起先是在windows下用mysql c++ connector进行编程,之所以选用c++而不是c的api,主要是考虑到c++ connector是按照JDBC的api进行实现 ...

  7. redis命令monitor详解

    通过monitor这个命令可以查看数据库在当前做了什么操作,对于管理redis数据库有这很大的帮助 如图示,在redis客户端进行操作显示info,另一个窗口打开monitor就会显示出这个命令的操作 ...

  8. 【转】UGUI EventSystem

    EventSystem   The EventSystem is a way of sending events to objects in the application based on inpu ...

  9. linux系统mysql连接检查脚本

    为了便于检查ECS服务器内部搭建的mysql或者RDS的mysql数据库,编写了一个mysql测试脚本,对于不熟悉命令行操作的朋友出现问题时可以检测一下.       脚本下载地址: http://j ...

  10. ZOJ 2112 Dynamic Rankings(带修改的区间第K大,分块+二分搜索+二分答案)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...