upd:现在推荐使用一个长度为 \(n\) 的一维向量。若状态矩阵 \(F\) 对下一时间的状态矩阵 \(F'\) 有影响,则 \(F'=FA\) 中的 转移矩阵 \(A\) 的赋值方法是:

若状态矩阵中的第 \(x\) 个数对下一单位时间的状态矩阵的第 \(y\) 个数有影响,则将转移矩阵的第 \(x\) 行第 \(y\) 列赋值为合适的数。


递推太慢,用矩阵加速。

有递推关系

\[f_i=a_{i-1}f_{i-1}+a_{i-2}f_{i-2}+\cdots+a_{i-k}f_{i-k}
\]

若有目标矩阵 \(\boldsymbol{F}\) :

\[\left[
\begin{matrix}
f_i \\
f_{i-1} \\
\vdots \\
f_{i-k+1}
\end{matrix}
\right]
\]

与已得出的矩阵 \(\boldsymbol{F'}\) :

\[\left[
\begin{matrix}
f_{i-1} \\
f_{i-2} \\
\vdots \\
f_{i-k}
\end{matrix}
\right]
\]

则式子 \(\boldsymbol{F}=\boldsymbol{A}\boldsymbol{F'}\) 中的 $ \boldsymbol{A}$ 为:

\[\left[
\begin{matrix}
a_1 & a_2 & a_3 & \cdots & a_k \\
1 &0 & 0 & \cdots &0 \\
0 &1 & 0 & \cdots &0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{matrix}
\right]
\]

从 \(\boldsymbol{F'}\) 变换到 \(\boldsymbol{F}\) 所需要的次数 $ i $ 即为 \(\boldsymbol{A}\) 的指数。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
int T;
ll n;
const ll mod=1e9+7;
struct Matrix{
ll num[5][5];
Matrix operator*(const Matrix &x)const{
Matrix res;
for(int i=1; i<=3; i++)
for(int j=1; j<=3; j++){
res.num[i][j] = 0;
for(int k=1; k<=3; k++)
res.num[i][j] = (res.num[i][j]+num[i][k]*x.num[k][j]%mod)%mod;
}
return res;
}
Matrix operator^(ll k)const{
Matrix res, x=*this;
memset(res.num, 0, sizeof(res.num));
for(int i=1; i<=3; i++) res.num[i][i] = 1;
//把res初始化成一个单位矩阵
while(k){
if(k&1) res = res * x;
x = x * x;
k >>= 1;
}
return res;
}
}a, b;
int main(){
cin>>T;
while(T--){
scanf("%lld", &n);
if(n<=3) printf("1\n");
else{
memset(a.num, 0, sizeof(a.num));
memset(b.num, 0, sizeof(b.num));
a.num[1][1] = a.num[1][3] = a.num[2][1] = a.num[3][2] = 1;
for(int i=1; i<=3; i++) b.num[i][1] = 1;
n -= 3;
a = a ^ n;
b = a * b;
//矩阵快速幂
printf("%lld\n", b.num[1][1]);
}
}
return 0;
}

luogu1939 【模板】矩阵加速(数列)的更多相关文章

  1. 洛谷 [P1939] 矩阵加速数列

    矩阵快速幂模版 #include <iostream> #include <cstring> #include <cstdlib> #include <alg ...

  2. Luogu P3390 【模板】矩阵快速幂&&P1939 【模板】矩阵加速(数列)

    补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一 ...

  3. P1939【模板】矩阵加速(数列)

    P1939[模板]矩阵加速(数列)难受就难受在a[i-3],这样的话让k=3就好了. #include<iostream> #include<cstdio> #include& ...

  4. 洛谷 P1939 【模板】矩阵加速(数列) 解题报告

    P1939 [模板]矩阵加速(数列) 题目描述 a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1] (x>3) 求a数列的第n项对1000000007(10^9+7)取余的值 ...

  5. 斐波那契数列F(n)【n超大时的(矩阵加速运算) 模板】

    hihocoder #1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个 ...

  6. [洛谷P1939]【模板】矩阵加速(数列)

    题目大意:给你一个数列a,规定$a[1]=a[2]=a[3]=1$,$a[i]=a[i-1]+a[i-3](i>3)$求$a[n]\ mod\ 10^9+7$的值. 解题思路:这题看似是很简单的 ...

  7. LuoGu P1939 【模板】矩阵加速(数列)

    板子传送门 矩阵快速幂学完当然要去搞一搞矩阵加速啦 (矩阵加速相对于矩阵快速幂来说就是多了一个构造矩阵的过程) 关于怎样来构造矩阵,这位大佬讲的很好呢 构造出矩阵之后,我们再去用矩阵快速幂乘出来,取[ ...

  8. P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...

  9. 洛谷 P1939 矩阵加速(数列)

    题意简述 \(a[1]=a[2]=a[3]=1\) \(a[x]=a[x−3]+a[x−1](x>3)\) 求a数列的第n项对1000000007取余的值. 题解思路 矩阵加速 设\[ F=\b ...

随机推荐

  1. AJPFX辨析continue与break的区别

    1.break : (1).结束当前整个循环,执行当前循环下边的语句.忽略循环体中任何其它语句和循环条件测试.(2).只能跳出一层循环,如果你的循环是嵌套循环,那么你需要按照你嵌套的层次,逐步使用br ...

  2. cocos2dx贝塞尔曲线--使用PS辅助规划动作路径

    bool HelloWorld::init() { ////////////////////////////// // 1. super init first if ( !Layer::init() ...

  3. Python+selenium之跳过测试和预期失败

    在运行测试时,需要直接跳过某些测试用例,或者当用例符合某个条件时跳过测试,又或者直接将测试用例设置为失败.unittest单元测试框架提供了实现这些需求的装饰器. 1.unittest.skip(re ...

  4. NullPointerException检测

    APET-NPE插件工作原理 android应用程序编译的过程如下: 从图中,我们可以看出,app编译大致经历了四大阶段:java source files -> .class files -& ...

  5. Oracle 11g 新特性 – HM(Hang Manager)简介

    在这篇文章中我们会对oracle 11g 新特性—hang 管理器(Hang Manager) 进行介绍.我们需要说明,HM 只在RAC 数据库中存在. 在我们诊断数据库问题的时候,经常会遇到一些数据 ...

  6. JS等号的小注释

     一言以蔽之:一个等号是赋值操作,==先转换类型再比较,===先判断类型,如果不是同一类型直接为false. 

  7. codeforce Gym 100500C ICPC Giveaways(水)

    读懂题意就是水题,按照出现次数对下标排一下序,暴力.. #include<cstdio> #include<algorithm> #include<cstring> ...

  8. uoj#300.【CTSC2017】吉夫特

    题面:http://uoj.ac/problem/300 一道大水题,然而我并不知道$lucas$定理的推论.. $\binom{n}{m}$为奇数的充要条件是$n&m=n$.那么我们对于每个 ...

  9. Cenos7—安装

    1. 进入安装界面 2. 选择语言 3. 进行分区 4. 设置root密码

  10. GC执行finalize的过程以及对象的一次自我拯救

    参考资料:深入理解java虚拟机 /** * 此代码演示了两点: * 1.对象可以在被GC时自我拯救 * 2.这种自救的机会只有一次,因为一个对象的finalize()方法只会被系统自动调一次 */ ...