P2598 [ZJOI2009]狼和羊的故事

题目描述

“狼爱上羊啊爱的疯狂,谁让他们真爱了一场;狼爱上羊啊并不荒唐,他们说有爱就有方向......” Orez听到这首歌,心想:狼和羊如此和谐,为什么不尝试羊狼合养呢?说干就干! Orez的羊狼圈可以看作一个n*m个矩阵格子,这个矩阵的边缘已经装上了篱笆。可是Drake很快发现狼再怎么也是狼,它们总是对羊垂涎三尺,那首歌只不过是一个动人的传说而已。所以Orez决定在羊狼圈中再加入一些篱笆,还是要将羊狼分开来养。 通过仔细观察,Orez发现狼和羊都有属于自己领地,若狼和羊们不能呆在自己的领地,那它们就会变得非常暴躁,不利于他们的成长。 Orez想要添加篱笆的尽可能的短。当然这个篱笆首先得保证不能改变狼羊的所属领地,再就是篱笆必须修筑完整,也就是说必须修建在单位格子的边界上并且不能只修建一部分。

输入输出格式

输入格式:

文件的第一行包含两个整数n和m。接下来n行每行m个整数,1表示该格子属于狼的领地,2表示属于羊的领地,0表示该格子不是任何一只动物的领地。

输出格式:

文件中仅包含一个整数ans,代表篱笆的最短长度。

输入输出样例

输入样例#1: 复制

2 2
2 2
1 1
输出样例#1: 复制

2

说明

数据范围

10%的数据 n,m≤3

30%的数据 n,m≤20

100%的数据 n,m≤100

分析

最小割,使得狼与羊不连通。

注意建图:S向狼连INF的边,狼连羊连1的边,羊连T连INF的边。狼向空地,羊向空连1的边,空地与空地连1的边。

code

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define id(x,y) (x-1)*m+y using namespace std; const int INF = 1e9;
const int N = ; struct Edge{
int to,nxt,c;
}e[];
int head[N],dis[N],cur[N],q[],mp[][];
int L,R,tot = ,S,T;
int dx[] = {,,,-},dy[] = {,-,,}; inline char nc() {
static char buf[],*p1 = buf,*p2 = buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2)?EOF:*p1++;
}
inline int read() {
int x = ,f = ;char ch = nc();
for (; ch<''||ch>''; ch = nc()) if (ch=='-') f = -;
for (; ch>=''&&ch<=''; ch = nc()) x = x * + ch - '';
return x * f;
}
inline void add_edge(int u,int v,int w) {
e[++tot].to = v,e[tot].c = w,e[tot].nxt = head[u],head[u] = tot;
e[++tot].to = u,e[tot].c = ,e[tot].nxt = head[v],head[v] = tot;
}
bool bfs() {
for (int i=; i<=T; ++i) {
cur[i] = head[i];dis[i] = -;
}
L = ;R = ;
q[++R] = S;dis[S] = ;
while (L <= R) {
int u = q[L++];
for (int i=head[u]; i; i=e[i].nxt) {
int v = e[i].to,c = e[i].c;
if (dis[v]==- && c>) {
dis[v] = dis[u] + ;
q[++R] = v;
if (v==T) return true;
}
}
}
return false;
}
int dfs(int u,int flow) {
if (u==T) return flow;
int used = ;
for (int &i=cur[u]; i; i=e[i].nxt) {
int v = e[i].to,c = e[i].c;
if (dis[v]==dis[u]+ && c>) {
int tmp = dfs(v,min(c,flow-used));
if (tmp > ) {
e[i].c -= tmp;e[i^].c += tmp;
used += tmp;
if (used==flow) break;
}
}
}
if (used!=flow) dis[u] = -;
return used;
}
inline int dinic() {
int ans = ;
while (bfs()) ans += dfs(S,INF);
return ans;
}
int main() {
int n = read(),m = read();
S = ;T = n*m+;
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
mp[i][j] = read();
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j) {
if (mp[i][j]==) {add_edge(id(i,j),T,INF);continue;}
if (mp[i][j]==) add_edge(S,id(i,j),INF);
for (int k=; k<; ++k) {
int x = i + dx[k],y = j + dy[k];
if (x> && x<=n && y> && y<=m && mp[x][y]!=)
add_edge(id(i,j),id(x,y),);
}
}
printf("%d",dinic());
return ;
}

P2598 [ZJOI2009]狼和羊的故事(最小割)的更多相关文章

  1. P2598 [ZJOI2009]狼和羊的故事(最小割)

    P2598 [ZJOI2009]狼和羊的故事 说真的,要多练练网络流的题了,这么简单的网络流就看不出来... 题目要求我们要求将狼和羊分开,也就是最小割,(等等什么逻辑...头大....) 我们这样想 ...

  2. BZOJ 1412: [ZJOI2009]狼和羊的故事( 最小割 )

    显然是最小割...把狼的领地连S, 羊的领地连T, 然后中间再连边, 跑最大流就OK了 -------------------------------------------------------- ...

  3. 【BZOJ1412】[ZJOI2009]狼和羊的故事 最小割

    [BZOJ1412][ZJOI2009]狼和羊的故事 Description “狼爱上羊啊爱的疯狂,谁让他们真爱了一场:狼爱上羊啊并不荒唐,他们说有爱就有方向......” Orez听到这首歌,心想: ...

  4. BZOJ1412[ZJOI2009]狼和羊的故事——最小割

    题目描述 “狼爱上羊啊爱的疯狂,谁让他们真爱了一场:狼爱上羊啊并不荒唐,他们说有爱就有方向......” Orez听到这首歌,心想:狼和羊如此和谐,为什么不尝试羊狼合养呢?说干就干! Orez的羊狼圈 ...

  5. [ZJOI2009] 狼与羊的故事 - 最小割

    给定一个\(N \times M\)方格矩阵,每个格子可在\(0,1,2\)中取值.要求在方格的边上进行划分,使得任意联通块内不同时包含\(1\)和\(2\)的格子. ________________ ...

  6. P2598 [ZJOI2009]狼和羊的故事(网络流)

    P2598 [ZJOI2009]狼和羊的故事 源点和所有狼连 $inf$ 的边 所有羊和汇点连 $inf$ 的边 所有点向四周连 $1$ 的边 这样所有狼和羊之间的边都被割掉了 统计最小割就好辣 #i ...

  7. 洛谷 P2598 [ZJOI2009]狼和羊的故事 解题报告

    P2598 [ZJOI2009]狼和羊的故事 题目描述 "狼爱上羊啊爱的疯狂,谁让他们真爱了一场:狼爱上羊啊并不荒唐,他们说有爱就有方向......" \(Orez\)听到这首歌, ...

  8. 洛谷P2598 [ZJOI2009]狼和羊的故事 题解

    题目链接: https://www.luogu.org/problemnew/show/P2598 分析: 我们知道此题的目的是将狼和羊分割开,很容易想到狼在S,羊在T中. 首先,我们可以在狼,羊,空 ...

  9. p2598 [ZJOI2009]狼和羊的故事

    传送门 分析 起点向狼连边,羊向终点连边,边权均为inf 每个点向它四联通的点连边权萎1的边 跑最小割即可 代码 #include<iostream> #include<cstdio ...

随机推荐

  1. ECharts3.0介绍、入门

    ECharts 特性介绍 ECharts,一个纯 Javascript 的图表库,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器(IE8/9/10/11,Chrome,Firefox,S ...

  2. [转]兼容各个浏览器的H.264播放: H.264+HTML5+FLOWPLAYER+WOWZA+RMTP

    一.方案确定 计划做视频播放,要求能够播放H264编码的mp4文件,各个浏览器,各种终端都能播放. 首先查找可行性方案, http://www.cnblogs.com/sink_cup/archive ...

  3. echarts使用中的那些事儿( 三)

    饼图上的那些字与下面说明性的文字有些重合,该怎么缩小圆形的大小呢,还有它的位置,怎么让它向上一些或者向下一些: 有以下两个属性可以解决问题: radius : '55%', ------------这 ...

  4. Vue的computed和methods区别

    1,computed里面定义的方法是以属性的方式(当然也可以以函数调用的方式)出现在html里面,而methods里面定义的方法是以函数的方式: 2,computed依赖于data里面的数据,只有相关 ...

  5. 评价PE基金绩效的常用指标

    作为信息系统,辅助管理层决策是重要的功能之一.前文介绍了PE基金管理系统的建设,对PE业务的运转有了一些了解,但没有介绍如何评价PE基金的绩效,而这是管理层作出重大决策的主要依据之一.PE基金本质也是 ...

  6. ubuntu server 16.04安装GPU服务器

    1 Ubuntu16.04 系统安装过程中,需要勾选openssh-server 方便远程连接 2 必须安装gcc 与g++ 3 安装显卡驱动 NVIDIA-Linux-x86_64-367.57.r ...

  7. iOS VIPER架构(三)

    路由是实现模块间解耦的一个有效工具.如果要进行组件化开发,路由是必不可少的一部分.目前iOS上绝大部分的路由工具都是基于URL匹配的,优缺点都很明显.这篇文章里将会给出一个更加原生和安全的设计,这个设 ...

  8. MySQL基础环境_安装配置教程(Windows7 64或Centos7.2 64、MySQL5.7)

    MySQL基础环境_安装配置教程(Windows7 64或Centos7.2 64.MySQL5.7) 安装包版本 1)     VMawre-workstation版本包 地址: https://m ...

  9. mysql-单表操作

    mySql单表操作主要有一下内容: 1.查询:查询又分为几种,范围查询,模糊查询.空值查询.多条件查询 查询的语句格式为:SELECT 字段 1,字段 2,字段 3...FROM 表名 WHERE 条 ...

  10. Oracle 11g 新特性 – HM(Hang Manager)简介

    在这篇文章中我们会对oracle 11g 新特性—hang 管理器(Hang Manager) 进行介绍.我们需要说明,HM 只在RAC 数据库中存在. 在我们诊断数据库问题的时候,经常会遇到一些数据 ...