bzoj 3527 [Zjoi2014] 力 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527
看了看TJ才推出来式子,还是不够熟练啊;
TJ:https://blog.csdn.net/qq_33929112/article/details/54590319
然后竟然想愚蠢地做 n 遍 FFT 呵呵...其实做一遍就够了,得到的数组的角标就是上限。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
int const xn=(<<);
db const Pi=acos(-1.0);
int n,lim,rev[xn];
struct com{db x,y;}a[xn],b[xn],q[xn],p[xn],g[xn];
com operator + (com a,com b){return (com){a.x+b.x,a.y+b.y};}
com operator - (com a,com b){return (com){a.x-b.x,a.y-b.y};}
com operator * (com a,com b){return (com){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
void fft(com *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
com wn=(com){cos(Pi/mid),tp*sin(Pi/mid)};
for(int j=,len=(mid<<);j<lim;j+=len)
{
com w=(com){,};
for(int k=;k<mid;k++,w=w*wn)
{
com x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y; a[j+mid+k]=x-y;
}
}
}
}
int main()
{
scanf("%d",&n); n--;
for(int i=;i<=n;i++)
{
scanf("%lf",&q[i].x); p[n-i].x=q[i].x;
if(i)g[i].x=(1.0/i/i);//1.0/i/i
}
int l=; lim=;
while(lim<=n+n)lim<<=,l++;
for(int i=;i<lim;i++)
rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
fft(q,); fft(p,); fft(g,);
for(int i=;i<lim;i++)a[i]=q[i]*g[i];
for(int i=;i<lim;i++)b[i]=p[i]*g[i];
fft(a,-); fft(b,-);
for(int i=;i<=n;i++)printf("%.3lf\n",a[i].x/lim-b[n-i].x/lim);
return ;
}
bzoj 3527 [Zjoi2014] 力 —— FFT的更多相关文章
- bzoj 3527 [Zjoi2014]力——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...
- BZOJ 3527: [Zjoi2014]力(FFT)
我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...
- BZOJ 3527 [Zjoi2014]力 ——FFT
[题目分析] FFT,构造数列进行卷积,挺裸的一道题目诶. 还是写起来并不顺手,再练. [代码] #include <cmath> #include <cstdio> #inc ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- ●BZOJ 3527 [Zjoi2014]力
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3527 题解: FFT求卷积. $$\begin{aligned}E_i&=\frac ...
- BZOJ 3527: [ZJOI2014]力(FFT)
BZOJ 3527: [ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \[F_j=\sum \limits _ {i < j} \fra ...
- 数学(FFT):BZOJ 3527 [Zjoi2014]力
题目在这里:http://wenku.baidu.com/link?url=X4j8NM14MMYo8Q7uPE7-7GjO2_TXnMFA2azEbBh4pDf7HCENM3-hPEl4mzoe2w ...
- bzoj 3527: [Zjoi2014]力 快速傅里叶变换 FFT
题目大意: 给出n个数\(q_i\)定义 \[f_i = \sum_{i<j}{\frac{q_iq_j}{(i-j)^2}} - \sum_{i>j}\frac{q_iq_j}{(i-j ...
- bzoj 3527: [Zjoi2014]力【FFT】
大力推公式,目标是转成卷积形式:\( C_i=\sum_{j=1}^{i}a_jb_{i-j} \) 首先下标从0开始存,n-- \[ F_i=\frac{\sum_{j<i}\frac{q_j ...
随机推荐
- Swagger学习和实践
Swagger学习和实践 学习了:https://www.cnblogs.com/zxtceq/p/5530396.html swagger 英 [ˈswægə(r)] 美 [ˈswæɡɚ] vi.昂 ...
- Jenkins系列之-—06 Ant构建
一.Ant 简介&构建环境 Apache Ant 是由 Java 语言开发的工具 构建ant环境: 1). 安装jdk,设置JAVA_HOME ,PATH ,CLASS_PATH 2). 下载 ...
- Perl图书的一些体会
近期,由于项目须要.又又一次将Perl学习起来. Perl老实说.让我又爱又恨. 爱它.是由于自己写代码的确非常爽. 是代码最少.速度最快的语言. 恨是由于看别人的代码实在太累了. 但,整体体会,在文 ...
- idea自动注入和自动编译
---恢复内容开始--- 自动编译也就是时时编译,当我们写错代码的时候,idea能够马上报错,这个是不错的功能. 安装操作看下图: 下面这个功能的作用就是,如果你不修改的话,你的项目可以正常运行,但是 ...
- 一些常用的shell
1 if语句 if语句的三种写法,注意[]的两个空格,else if 写法是elif,不要漏了fi结束 if [ xxx ] then fi if [ xxx ] then echo "&q ...
- kubernetes对象之deployment
系列目录 简述 Deployment为Pod和ReplicaSet提供了一个声明式定义(declarative)方法,用来替代以前的ReplicationController来方便的管理应用.典型的应 ...
- iOS开发:Toast for iPhone
iOS开发:Toast for iPhone 分享一个我写的类似于android的toast的提示框 主要特点: 1,支持屏幕Y轴任意位置显示,设置距离顶/底端距离 2,支持多行文本 3,支持设置 ...
- 实记处理mongodb的NUMA问题
一次在启动mongodb的过程中,出现过NUMA这个问题, mongodb日志显示如下: WARNING: You are running on a NUMA machine. We suggest ...
- C++基本数据类型及类型转换
http://blog.csdn.net/pipisorry/article/details/25346379 c++基本数据类型 什么样的数据算是byte类型,int类型,float类型,doubl ...
- CentOS 安装和配置 Mantis
Mantis是一个基于PHP技术的轻量级的开源缺陷跟踪系统,以Web操作的形式提供项目管理及缺陷跟踪服务.在功能上.实用性上足以满足中小型项目的管理及跟踪.更重要的是其开源,不需要负担任何费用. 1. ...