题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527

看了看TJ才推出来式子,还是不够熟练啊;

TJ:https://blog.csdn.net/qq_33929112/article/details/54590319

然后竟然想愚蠢地做 n 遍 FFT 呵呵...其实做一遍就够了,得到的数组的角标就是上限。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
int const xn=(<<);
db const Pi=acos(-1.0);
int n,lim,rev[xn];
struct com{db x,y;}a[xn],b[xn],q[xn],p[xn],g[xn];
com operator + (com a,com b){return (com){a.x+b.x,a.y+b.y};}
com operator - (com a,com b){return (com){a.x-b.x,a.y-b.y};}
com operator * (com a,com b){return (com){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
void fft(com *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
com wn=(com){cos(Pi/mid),tp*sin(Pi/mid)};
for(int j=,len=(mid<<);j<lim;j+=len)
{
com w=(com){,};
for(int k=;k<mid;k++,w=w*wn)
{
com x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y; a[j+mid+k]=x-y;
}
}
}
}
int main()
{
scanf("%d",&n); n--;
for(int i=;i<=n;i++)
{
scanf("%lf",&q[i].x); p[n-i].x=q[i].x;
if(i)g[i].x=(1.0/i/i);//1.0/i/i
}
int l=; lim=;
while(lim<=n+n)lim<<=,l++;
for(int i=;i<lim;i++)
rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
fft(q,); fft(p,); fft(g,);
for(int i=;i<lim;i++)a[i]=q[i]*g[i];
for(int i=;i<lim;i++)b[i]=p[i]*g[i];
fft(a,-); fft(b,-);
for(int i=;i<=n;i++)printf("%.3lf\n",a[i].x/lim-b[n-i].x/lim);
return ;
}

bzoj 3527 [Zjoi2014] 力 —— FFT的更多相关文章

  1. bzoj 3527 [Zjoi2014]力——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...

  2. BZOJ 3527: [Zjoi2014]力(FFT)

    我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...

  3. BZOJ 3527 [Zjoi2014]力 ——FFT

    [题目分析] FFT,构造数列进行卷积,挺裸的一道题目诶. 还是写起来并不顺手,再练. [代码] #include <cmath> #include <cstdio> #inc ...

  4. 【BZOJ】3527: [Zjoi2014]力 FFT

    [参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...

  5. ●BZOJ 3527 [Zjoi2014]力

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3527 题解: FFT求卷积. $$\begin{aligned}E_i&=\frac ...

  6. BZOJ 3527: [ZJOI2014]力(FFT)

    BZOJ 3527: [ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \[F_j=\sum \limits _ {i < j} \fra ...

  7. 数学(FFT):BZOJ 3527 [Zjoi2014]力

    题目在这里:http://wenku.baidu.com/link?url=X4j8NM14MMYo8Q7uPE7-7GjO2_TXnMFA2azEbBh4pDf7HCENM3-hPEl4mzoe2w ...

  8. bzoj 3527: [Zjoi2014]力 快速傅里叶变换 FFT

    题目大意: 给出n个数\(q_i\)定义 \[f_i = \sum_{i<j}{\frac{q_iq_j}{(i-j)^2}} - \sum_{i>j}\frac{q_iq_j}{(i-j ...

  9. bzoj 3527: [Zjoi2014]力【FFT】

    大力推公式,目标是转成卷积形式:\( C_i=\sum_{j=1}^{i}a_jb_{i-j} \) 首先下标从0开始存,n-- \[ F_i=\frac{\sum_{j<i}\frac{q_j ...

随机推荐

  1. HDU 2648(搜索题,哈希表)

    #include<iostream> #include<map> #include<string> #include<cstring> #include ...

  2. Android_自己定义切换控件SwitchView

    1.示意图 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemltbzIwMTM=/font/5a6L5L2T/fontsize/400/fill/I0JB ...

  3. Sencha Touch 之初接触

    1.Sencha Touch开发与普通web开发有什么区别? Sencha Touch(为方便起见,本文后面一律简写为ST)页面的开发跟普通html页面相比,总体来说没有本质上的区别,只是引入了对ht ...

  4. mysql flush详解

    http://www.cnblogs.com/ggjucheng/archive/2012/11/07/2758021.html   cnblogs - FLUSH TABLES WITH READ ...

  5. Spring.net1.3.1+Nhibernate3.0+Mysql/Access/SqlServer/Oracel/SQlite

    详情请看我的博文:http://www.ruisoftcn.com/blog/article.asp?id=999

  6. 数据挖掘 与 Web开发何去何从

    (0)引子 以下以现实生活中的一个实例引出本博客的探究点.或许类似的情况正发生在你的身边. 小弟工作5年了,近期有点迷茫. 上一份工作在一家比較大的门户站点做web开发和移动互联网数据挖掘(人手比較紧 ...

  7. Apache Server与多个独立Tomcat集成

    取经自http://www.ramkitech.com/2012/03/virtual-host-apache-httpd-server-tomcat.html 继续干Tomcat和Apache Se ...

  8. Android Studio 工程的 .gitignore

    新建一个 Android Studio 工程时会默认建立两个 .gitignore 文件 .gitignore *.iml .gradle /local.properties /.idea/works ...

  9. 安卓版本6.0打开uiautomator报错

    可能是appium打开了,被占用:或者是找不到手机

  10. 无感知的用同步的代码编写方式达到异步IO的效果和性能,避免了传统异步回调所带来的离散的代码逻辑和陷入多层回调中导致代码无法维护

    golang/goroutine 和 swoole/coroutine 协程性能测试对比 - Go语言中文网 - Golang中文社区 https://studygolang.com/articles ...