hdu-5768 Lucky7(容斥定理+中国剩余定理)
题目链接:
Lucky7
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 65536/65536 K (Java/Others)
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes.
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi.
It is guranteed that all the pi are distinct and pi!=7.
It is also guaranteed that p1*p2*…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
题意:
问[l,r]中有多少个数%7==0且%pi!=ai;
思路:
范围太大,用容斥原理求出%7==0&&%pi==ai,的这些再加加减减;
CRT用的白书的板子;还不太会,明天来好好学学;代码参考了http://blog.csdn.net/danliwoo/article/details/52058069
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=20071027;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=(1<<8)+100;
const int maxn=(1<<8);
const double eps=1e-8; int n,flag[20];
LL L,R,m[20],a[20];
LL cal(LL x,LL y,LL mod)
{
LL s=0,base=x;
while(y)
{
if(y&1)s=(s+base)%mod;
base=(base+base)%mod;
y>>=1;
}
return s;
}
LL gao(LL x, LL r, LL p){
return (x-r)/p;
} void exgcd(LL fa,LL fb,LL &d,LL &x,LL &y)
{
if(fb==0){d=fa;x=1;y=0;}
else
{
exgcd(fb,fa%fb,d,y,x);
y-=x*(fa/fb);
}
}
inline LL CRT()
{
LL M=1,d,y,x=0;
For(i,0,n)if(flag[i])M=M*m[i];
For(i,0,n)
{
if(!flag[i])continue;
LL w=M/m[i];
exgcd(m[i],w,d,d,y);
y=(y%M+M)%M;
x=(x+cal(cal(y,w,M),a[i],M))%M;
}
x=(x+M)%M;
LL ans=gao(R+M,x,M)-gao(M+L-1,x,M);
return ans;
} int main()
{
int t,Case=0;
read(t);
while(t--)
{
read(n);read(L);read(R);
For(i,0,n-1)
{
read(m[i]);read(a[i]);
}
m[n]=7;a[n]=0;flag[n]=1;
int sum=(1<<n);
LL ans=0;
For(i,0,sum-1)
{
int num=0;
for(int j=0;j<n;j++)
{
if(i&(1<<j))flag[j]=1;
else flag[j]=0;
num+=flag[j];
}
if(num&1)num=-1;
else num=1;
ans=ans+num*CRT();
}
printf("Case #%d: %lld\n",++Case,ans);
} return 0;
}
hdu-5768 Lucky7(容斥定理+中国剩余定理)的更多相关文章
- hdu 5768 Lucky7 容斥
Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...
- HDU - 4135 Co-prime 容斥定理
题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...
- HDU 5514 Frogs 容斥定理
Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...
- HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortun ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1796How many integers can you find(简单容斥定理)
How many integers can you find Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 ...
- HDU 4135 Co-prime 欧拉+容斥定理
Co-prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU 1695 GCD(容斥定理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- 题解报告:hdu 4135 Co-prime(容斥定理入门)
Problem Description Given a number N, you are asked to count the number of integers between A and B ...
随机推荐
- mybatis学习网站
http://www.mybatis.org/mybatis-3/zh/index.html
- PC和手机怎么实现绝对居中?
示例1(懒人之家): http://www.51xuediannao.com/js/nav/360buy_nav.html 示例2(google官方):
- css3 - target
通过CSS3伪元素target,我们可以实现拉风琴 源码 <!DOCTYPE HTML> <html lang="en-US"> <head> ...
- 杂谈之WEB前端project师身价
了解javascript语言规范么?+1000 知道各浏览器的css差异么?+1000 javascript差异呢?+1000 知道html各标签的含义并不是常好地运用么?+1000 知道怎样跨浏览器 ...
- PHP函数parse_url()如何使用
又是一个非常使用的函数. <?php $url='http://www.cnblogs.com/lovebing'; $data = parse_url($url); var_dump($dat ...
- android实例讲解----Tomcat部署Web应用方法总结
参考文档:http://blog.csdn.net/yangxueyong/article/details/6130065 Tomcat部署Web应用方法总结 一.架构介 ...
- 【每日Scrum】第三天(4.13) TD学生助手Sprint1站立会议
TD学生助手Sprint1站立会议(4.13) 任务看板 站立会议内容 组员 昨天 今天 困难 签到 刘铸辉 (组长) 昨天完成了课程的增删改查功能 今天早晨静姐调整了下界面和配色,下午和宝月兄一起做 ...
- vim调试
首先,想调试一个程序的话,输入以下命令: guest-djjtew@ubuntu:~$ python3 -m pdb 1.py 这时候就停止了,等待着你的输入,然后输入"l"的话, ...
- centos创建本地yum仓库
怎样发布自己软件的安装和更新YUM源 在创建之前,我们先了解些相关的内容: yum仓库可以支持三种途径提供给yum在安装的时候下载rpm包 第一种: ftp服务 ftp:// 第二种: http ...
- Java泛型 类型变量的限定
有时候,类和方法须要对类型变量加以约束.比方你有一个方法,你仅仅希望它接收某个特定类型及其子类型作为參数. 以下就举一个方法限定接收參数的类型的样例来说明怎样限定类型变量. 首先有几个简单的辅助类: ...