题目链接:

Lucky7

Time Limit: 2000/1000 MS (Java/Others)  

  Memory Limit: 65536/65536 K (Java/Others)

Problem Description
 
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes. 
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
 
Input
 
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes. 
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi. 
It is guranteed that all the pi are distinct and pi!=7. 
It is also guaranteed that p1*p2*…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
 
Output
 
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
 
Sample Input
 
2
2 1 100
3 2
5 3
0 1 100
 
Sample Output
 
Case #1: 7
Case #2: 14

题意:

问[l,r]中有多少个数%7==0且%pi!=ai;

思路:

范围太大,用容斥原理求出%7==0&&%pi==ai,的这些再加加减减;

CRT用的白书的板子;还不太会,明天来好好学学;代码参考了http://blog.csdn.net/danliwoo/article/details/52058069

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=20071027;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=(1<<8)+100;
const int maxn=(1<<8);
const double eps=1e-8; int n,flag[20];
LL L,R,m[20],a[20];
LL cal(LL x,LL y,LL mod)
{
LL s=0,base=x;
while(y)
{
if(y&1)s=(s+base)%mod;
base=(base+base)%mod;
y>>=1;
}
return s;
}
LL gao(LL x, LL r, LL p){
return (x-r)/p;
} void exgcd(LL fa,LL fb,LL &d,LL &x,LL &y)
{
if(fb==0){d=fa;x=1;y=0;}
else
{
exgcd(fb,fa%fb,d,y,x);
y-=x*(fa/fb);
}
}
inline LL CRT()
{
LL M=1,d,y,x=0;
For(i,0,n)if(flag[i])M=M*m[i];
For(i,0,n)
{
if(!flag[i])continue;
LL w=M/m[i];
exgcd(m[i],w,d,d,y);
y=(y%M+M)%M;
x=(x+cal(cal(y,w,M),a[i],M))%M;
}
x=(x+M)%M;
LL ans=gao(R+M,x,M)-gao(M+L-1,x,M);
return ans;
} int main()
{
int t,Case=0;
read(t);
while(t--)
{
read(n);read(L);read(R);
For(i,0,n-1)
{
read(m[i]);read(a[i]);
}
m[n]=7;a[n]=0;flag[n]=1;
int sum=(1<<n);
LL ans=0;
For(i,0,sum-1)
{
int num=0;
for(int j=0;j<n;j++)
{
if(i&(1<<j))flag[j]=1;
else flag[j]=0;
num+=flag[j];
}
if(num&1)num=-1;
else num=1;
ans=ans+num*CRT();
}
printf("Case #%d: %lld\n",++Case,ans);
} return 0;
}

  

hdu-5768 Lucky7(容斥定理+中国剩余定理)的更多相关文章

  1. hdu 5768 Lucky7 容斥

    Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  2. HDU - 4135 Co-prime 容斥定理

    题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...

  3. HDU 5514 Frogs 容斥定理

    Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...

  4. HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)

    When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortun ...

  5. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. HDU 1796How many integers can you find(简单容斥定理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  7. HDU 4135 Co-prime 欧拉+容斥定理

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  8. HDU 1695 GCD(容斥定理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  9. 题解报告:hdu 4135 Co-prime(容斥定理入门)

    Problem Description Given a number N, you are asked to count the number of integers between A and B ...

随机推荐

  1. 跟开涛学SpringMVC(4.1):Controller接口控制器详解(1)

    http://www.importnew.com/19397.html http://blog.csdn.net/u014607184/article/details/52074530 https:/ ...

  2. yii框架:CDbConnection failed to open the DB connection: could not find driver的解决的方法

    这个问题是由于php中缺少pdo mysql造成的. 解决方法是为php加入此扩展.前往你最早的php安装文件,进入ext/pdo_mysql/文件夹下,然后./configure --with-ph ...

  3. 【Spark】RDD操作具体解释4——Action算子

    本质上在Actions算子中通过SparkContext运行提交作业的runJob操作,触发了RDD DAG的运行. 依据Action算子的输出空间将Action算子进行分类:无输出. HDFS. S ...

  4. sql的一些知识_函数_汇总数据

    汇总数据 avg()---------求平均数 值得注意的是:avg()只能用于一个列的平均值查询,多个列的平均值请使用多个avg() avg()忽略null值 count()-------计数(指定 ...

  5. 百科知识 .tar.xz文件如何打开

    7-ZIP可以打开,右击提取到当前目录即可   发现这个压缩比例还是相当不一般的,都快十倍了.

  6. [LeetCode][Java] Best Time to Buy and Sell Stock IV

    题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

  7. meta标签多种用法

    <meta name=”google” content=”notranslate” /> <!-- 有时,Google在结果页面会提供一个翻译链接,但有时候你不希望出现这个链接,你可 ...

  8. python(20)- 列表生成式和生成器表达式练习Ⅱ

    题目一: 有两个列表,分别存放来老男孩报名学习linux和python课程的学生名字linux=['钢弹','小壁虎','小虎比','alex','wupeiqi','yuanhao']python= ...

  9. 数据迁移实战:基于Kettle的Mysql到DB2的数据迁移

    From:https://my.oschina.net/simpleton/blog/525675 一.什么是ETL ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数 ...

  10. 【转载】ASP.NET应用程序与页面生命周期

    在本文中,我们将了解不同的事件,ASP.NET 应用程序的生命周期以浏览器向 Web 服务器(对于 ASP.NET 应用程序,通常为 IIS)发送请求为起点,直至将请求结果返回至浏览器结束.在这个过程 ...