Description

都说程序员找不到妹子,可是无人知晓,三生石上竟然还刻着属于小 E 的一笔。

那一天,小 E 穷尽毕生的积蓄,赠与了妹子一个非同寻常的定情信物。那是一个小

小的正方体,但透过它,可以看到过去,可以洞彻天机。

这份信物仿佛一只深邃的眼。当看透它看似简单的外表后,深邃的内心却最是可以

叩击人的灵魂的。不出所料,妹子果然被这个信物超越空间的美所吸引。

“易有太极,是生两仪,两仪生四象,四象生八卦。,八卦定吉凶,吉凶生大业。”

这句箴言在其上得到了完美的诠释。

是的,这正是一个超正方体。

小 E 告诉妹子,他的情意也如这份信物一样深厚。现在妹子想知道,小 E 对她的情

意究竟有几分?

我们知道,点动成线,线动成面,面动成体......即 n 维超立方体可看作由 n-1 维超

立方体沿垂直于它的所有的棱的方向平移得到的立体图形。

我们可以将点看作 0 维超立方体,将直线看作 1 维超立方体,将正方形看作 2 维超

立方体......依此类推。

任何一个 n 维超立方体(n>0)都是由低维的超立方体元素组成的:它的 n-1 维表面

是 n-1 维的超立方体,它的 n-2 维边缘是 n-2 维的超立方体,它的 n-3 维元素是 n-3 维的

超立方体......

小 E 对妹子的情意即为在他的定情信物——K 维超立方体中,含有每一维的元素个

数。由于元素个数可能较大,只需要输出它所包含的每一维元素个数模 P 后的异或和。

Input

两个整数 K、P,详见题目叙述。

Output

一个非负整数,表示小 E 的定情信物所包含的每一维元素个数模 P 后的异或和。注

意:异或和可能会大于 P。

Sample Input

input 1
3 7

Input 2

4 2333

Input 3

12 7723

Sample Output

Output1

3

Output 2

33

Output 3

360

Hint
对于样例2的解释:
一个三维超立方体含有 8 个零维元素、12 个一维元素、6 个二维元素、1 个三维

元素,模 7 后分别为 1,5,6,1,异或和为 1^5^6^1=3。

HINT

对于 100%的数据,N≤10^7,P 为 10^9 内的素数。
/*
考虑每个n维超立方体的k维元素的“对角线”向量就是从n维中选出k维,每一维为+1或-1,答案就是C(n,k)*2^k,在预处理出逆元之后可以O(n)。
但是由于p可以<n,所以可能要求(b*p)^(-1),这个是没有逆元的,所以维护cnt表示当前答案p有几个,还要注意逆元是rev[tmp%p]。
*/
#include<cstdio>
#include<iostream>
#define lon long long
#define N 10000010
using namespace std;
int n,p;lon inv[N];
void get_inv(){
int t=min(n,p-);
inv[]=;
for(int i=;i<=t;i++)
inv[i]=inv[p%i]*(p-p/i)%p;
}
lon poww(lon a,int b){
lon ans=;
while(b){
if(b&) ans=ans*a%p;
a=a*a%p;b>>=;
}
return ans%p;
}
int main(){
scanf("%d%d",&n,&p);
if(p==){printf("1\n");return ;}
get_inv();
lon ans=poww(,n);lon sum=ans,cnt=;
for(int i=;i<=n;i++){
int tmp=n-i+;
while(tmp%p==) cnt++,tmp/=p;
ans=ans*tmp%p;
tmp=i;
while(tmp%p==) cnt--,tmp/=p;
ans=ans*inv[tmp%p]%p;
ans=ans*inv[]%p;
sum^=cnt?:ans;
}
printf("%d\n",sum);
return ;
}

定情信物(bzoj 3823)的更多相关文章

  1. bzoj 3823: 定情信物 线性筛逆元

    3823: 定情信物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 108  Solved: 2[Submit][Status] Descriptio ...

  2. [BZOJ 3823]定情信物

    题面 定情信物 题解 这题主要考高中物理和数学. 首先定义 \(f[i][j]\) 表示 \(i\) 维超立方体中第 \(j\) 维元素的数量,根据实际意义,我们可以推出递推式: \(f[i][j]= ...

  3. BZOJ3823 : 定情信物

    n维超立方体有$2^{n-i}C_n^i$个i维元素,于是$O(n)$预处理出1到n的逆元,再$O(n)$计算即可. 注意Trick:P可能小于n,所以要将数字表示成$a\times P^b$的形式. ...

  4. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  5. 洛谷 P2111 考场奇遇

    P2111 考场奇遇 题目背景 本市的某神校里有一个学霸,他的名字叫小明(为了保护主人公的隐私,他的名字都用“小明”代替).在这次的期中考试中,小明同学走桃花运,在考场上认识了一位女生,她的名字叫小红 ...

  6. 深入理解分布式系统的2PC和3PC

    协调者 在分布式系统中,每一个机器节点虽然都能明确的知道自己执行的事务是成功还是失败,但是却无法知道其他分布式节点的事务执行情况.因此,当一个事务要跨越多个分布式节点的时候(比如,淘宝下单流程,下单系 ...

  7. VB调用存储过程 - CreateParameter 方法

    这次又转为VB6了.......  (┬_┬) ---------------------------------------------------------------------------- ...

  8. Servlet基本_Filter

    1.概念・サーブレットフィルタとは.サーブレットやJSPの「共通の前後処理」を記述するための仕組みです.・フィルタはサーブレットやJSPの前に位置し.実行前と後に.リクエスト.レスポンスに対して任意の ...

  9. NO.008-2018.02.13《折桂令·春情》元代:徐再思

    折桂令·春情_古诗文网   折桂令·春情 元代:徐再思 平生不会相思,才会相思,便害相思.生下来以后还不会相思,才刚刚懂了什么是相思,却深受着相思之苦. 身似浮云,心如飞絮,气若游丝.身像飘浮的云,心 ...

随机推荐

  1. 10分钟搞懂toString和valueOf函数(详细版)

    首先要说明的是这两种方法是toPrimitive抽象操作里会经常用到的. 默认情况下,执行这个抽象操作时会先执行valueOf方法,如果返回的不是原始值,会继续执行toString方法,如果返回的还不 ...

  2. 【0624课外作业】将一个double类型的小数,四舍五入保留两位小数

    package com.work0624; /** * 课外作业 *将一个double类型的小数,四舍五入保留两位小数 * @author L * */ import java.util.Scanne ...

  3. 01_1JAVA简介

    01_1JAVA简介 1. Java基础 语法基础.OO.Exception.Array.基础类.I/O Stream.Collection /Generic.Thread.TCP/UDP.GUI.M ...

  4. ssh整合思想 Spring分模块开发 crud参数传递 解决HTTP Status 500 - Write operations are not allowed in read-only mode (FlushMode.MANUAL): Turn your Session into FlushMode.COMMIT/AUTO or(增加事务)

    在Spring核心配置文件中没有增加事务方法,导致以上问题 Action类UserAction package com.swift.action; import com.opensymphony.xw ...

  5. R-codes-tips

    1. 在shell执行R文件 chmod 0755 file.R Rscript file.R 2.  载入数据 data(dune) 3. attach() 将data.frame添加到R的搜索路径 ...

  6. LeetCode(215) Kth Largest Element in an Array

    题目 Find the kth largest element in an unsorted array. Note that it is the kth largest element in the ...

  7. LeetCode(258) Add Digits

    题目 Given a non-negative integer num, repeatedly add all its digits until the result has only one dig ...

  8. poj--1064

    题意:有N条绳子,它们的长度分别为Li.如果从它们中切割出K条长度相同的绳子的话,这K条绳子最长能有多长?答案保留到小数点后2位. 思路:这些最大最小化问题大多数可以用二分查找的方法来解题 用 d 表 ...

  9. jenkins执行构建并查看结果

    继完成构建项目配置http://www.cnblogs.com/yajing-zh/p/5111060.html后,则要执行构建. 回到jenkins主页之后,我们看到一个新建的项目显示出来: 点击进 ...

  10. 打造一款属于自己的web服务器——从简单开始

    距离开篇已经过了很久,期间完善了一下之前的版本,目前已经能够完好运行,基本上该有的功能都有了,此外将原来的测试程序改为示例项目,新项目只需按照示例项目结构实现controller和view即可,详情见 ...