题目链接 Eugene and big number

题目转化为

$f(n) = m * f(n - 1) + a$

$f(n + 1) = m * f(n) + a$

两式相减得

$f(n + 1) = (m + 1) * f(n) - m * f(n - 1)$

求$f(n)$

其中$m$为$10^{k}$ ($k$为$a$的位数)

那么利用矩阵快速幂加速就可以了。

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)    for (int i(a); i <= (b); ++i)

typedef long long LL;

struct Matrix{ LL arr[5][5];}  init, unit, Unit;

int T;
LL a, n, mod; inline LL Pow(LL a, LL b, LL Mod){
LL ret(1); for (; b; b >>= 1, (a *= a) %= Mod) if (b & 1) (ret *= a) %= Mod; return ret;
} Matrix Mul(Matrix a, Matrix b){
Matrix c;
rep(i, 1, 2) rep(j, 1, 2){
c.arr[i][j] = 0;
rep(k, 1, 2) (c.arr[i][j] += (a.arr[i][k] * b.arr[k][j] % mod)) %= mod;
}
return c;
} Matrix MatrixPow(Matrix a, LL k){
Matrix ret(Unit); for (; k; k >>= 1, a = Mul(a, a)) if (k & 1) ret = Mul(ret, a); return ret;
} inline LL calc(LL n){
LL ret(0); for (; n; n /= 10) ++ret;
return ret;
} int main(){ scanf("%d", &T);
while (T--){
Unit.arr[1][1] = Unit.arr[2][2] = 1;
scanf("%lld%lld%lld", &a, &n, &mod);
if (a == 0LL){
puts("0");
continue;
}
LL exp = calc(a), m = Pow(10, exp, mod);
LL f1 = a % mod, f2 = ((f1 * m) % mod + a) % mod;
LL f3 = ((f2 * m) % mod + a) % mod;
if (n == 1LL){
printf("%lld\n", f1 % mod);
continue;
} if (n == 2LL){
printf("%lld\n", f2 % mod);
continue;
} if (n == 3LL){
printf("%lld\n", f3 % mod);
continue;
} LL num = (2 * mod - m) % mod; init.arr[1][1] = f3, init.arr[1][2] = init.arr[2][1] = f2, init.arr[2][2] = f1;
unit.arr[1][1] = m + 1, unit.arr[1][2] = num, unit.arr[2][1] = 1, unit.arr[2][2] = 0;
Matrix mul = MatrixPow(unit, n - 3);
Matrix ret = Mul(mul, init);
printf("%lld\n", ret.arr[1][1]);
} return 0;
}

Codechef Eugene and big number(矩阵快速幂)的更多相关文章

  1. A - Number Sequence(矩阵快速幂或者找周期)

    Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * ...

  2. HDU 1005 Number Sequence【斐波那契数列/循环节找规律/矩阵快速幂/求(A * f(n - 1) + B * f(n - 2)) mod 7】

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  3. UVA - 10689 Yet another Number Sequence 矩阵快速幂

                      Yet another Number Sequence Let’s define another number sequence, given by the foll ...

  4. 2017 ACM/ICPC Asia Regional Shenyang Online:number number number hdu 6198【矩阵快速幂】

    Problem Description We define a sequence F: ⋅ F0=0,F1=1;⋅ Fn=Fn−1+Fn−2 (n≥2). Give you an integer k, ...

  5. Yet Another Number Sequence——[矩阵快速幂]

    Description Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recur ...

  6. HDU 1005 Number Sequence(矩阵快速幂,快速幂模板)

    Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1 ...

  7. HDU - 1005 Number Sequence 矩阵快速幂

    HDU - 1005 Number Sequence Problem Description A number sequence is defined as follows:f(1) = 1, f(2 ...

  8. HDU - 1005 -Number Sequence(矩阵快速幂系数变式)

    A number sequence is defined as follows:  f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) m ...

  9. CF - 392 C. Yet Another Number Sequence (矩阵快速幂)

    CF - 392 C. Yet Another Number Sequence 题目传送门 这个题看了十几分钟直接看题解了,然后恍然大悟,发现纸笔难于描述于是乎用Tex把初始矩阵以及转移矩阵都敲了出来 ...

随机推荐

  1. GoogleTest 之路3-Mocking Framework

    当你写一个原型或者测试的时候,依赖整个object 是不可行和明智的.一个 mock object和 real object 有同样的接口(所以它可以像同一个使用),但是让你在运行时进行指定它应该如何 ...

  2. PHP数组函数 array_multisort() ----对多个数组或多维数组进行排序

    PHP中array_multisort可以用来一次对多个数组进行排序,或者根据某一维或多维对多维数组进行排序. 关联(string)键名保持不变,但数字键名会被重新索引. 输入数组被当成一个表的列并以 ...

  3. python向上取整 向下取整

    向上取整 ceil() 函数返回数字的向上取整整数,就是返回大于等于变量的最近的整数. ceil()是不能直接访问的,需要导入 math 模块. import math math.ceil( x ) ...

  4. Applied Nonparametric Statistics-lec9

    Ref:https://onlinecourses.science.psu.edu/stat464/print/book/export/html/12 前面我们考虑的情况是:response是连续的, ...

  5. 【HIHOCODER 1181】欧拉路·二

    描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌. 主角继续往前走,面前出现了一座石桥,石桥的尽头有一道火焰墙,似乎无法通过. 小Hi注意到在桥头有一张 ...

  6. POJ:2955-Brackets(经典:括号匹配)

    传送门:http://poj.org/problem?id=2955 Brackets Time Limit: 1000MS Memory Limit: 65536K Description We g ...

  7. rocketmq源码分析2-broker的消息接收

    broker消息接收,假设接收的是一个普通消息(即没有事务),此处分析也只分析master上动作逻辑,不涉及ha. 1. 如何找到消息接收处理入口 可以通过broker的监听端口10911顺藤摸瓜式的 ...

  8. day01_05.数学运算符

    数学运算符 $zhang = 100; $lisi = 50; echo $zhang+$lisi; 答案:150 $zhang = 50; $lisi = 40; echo $zhang - $li ...

  9. 让读者快速了解RocketMQ消息中间件需要解决哪些问题

    本文首先引出消息中间件通常需要解决哪些问题,在解决这些问题当中会遇到什么困难,Apache RocketMQ作为阿里开源的一款高性能.高吞吐量的分布式消息中间件否可以解决,规范中如何定义这些问题.然后 ...

  10. NuGet安装本地包命令行

    尝试安装本地的NuGet包. 键入 "get-help NuGet" 可查看所有可用的 NuGet 命令. install-package Polly.Net40Async-Sig ...