Codechef Eugene and big number(矩阵快速幂)
题目转化为
$f(n) = m * f(n - 1) + a$
$f(n + 1) = m * f(n) + a$
两式相减得
$f(n + 1) = (m + 1) * f(n) - m * f(n - 1)$
求$f(n)$
其中$m$为$10^{k}$ ($k$为$a$的位数)
那么利用矩阵快速幂加速就可以了。
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for (int i(a); i <= (b); ++i)
typedef long long LL;
struct Matrix{ LL arr[5][5];} init, unit, Unit;
int T;
LL a, n, mod;
inline LL Pow(LL a, LL b, LL Mod){
LL ret(1); for (; b; b >>= 1, (a *= a) %= Mod) if (b & 1) (ret *= a) %= Mod; return ret;
}
Matrix Mul(Matrix a, Matrix b){
Matrix c;
rep(i, 1, 2) rep(j, 1, 2){
c.arr[i][j] = 0;
rep(k, 1, 2) (c.arr[i][j] += (a.arr[i][k] * b.arr[k][j] % mod)) %= mod;
}
return c;
}
Matrix MatrixPow(Matrix a, LL k){
Matrix ret(Unit); for (; k; k >>= 1, a = Mul(a, a)) if (k & 1) ret = Mul(ret, a); return ret;
}
inline LL calc(LL n){
LL ret(0); for (; n; n /= 10) ++ret;
return ret;
}
int main(){
scanf("%d", &T);
while (T--){
Unit.arr[1][1] = Unit.arr[2][2] = 1;
scanf("%lld%lld%lld", &a, &n, &mod);
if (a == 0LL){
puts("0");
continue;
}
LL exp = calc(a), m = Pow(10, exp, mod);
LL f1 = a % mod, f2 = ((f1 * m) % mod + a) % mod;
LL f3 = ((f2 * m) % mod + a) % mod;
if (n == 1LL){
printf("%lld\n", f1 % mod);
continue;
}
if (n == 2LL){
printf("%lld\n", f2 % mod);
continue;
}
if (n == 3LL){
printf("%lld\n", f3 % mod);
continue;
}
LL num = (2 * mod - m) % mod;
init.arr[1][1] = f3, init.arr[1][2] = init.arr[2][1] = f2, init.arr[2][2] = f1;
unit.arr[1][1] = m + 1, unit.arr[1][2] = num, unit.arr[2][1] = 1, unit.arr[2][2] = 0;
Matrix mul = MatrixPow(unit, n - 3);
Matrix ret = Mul(mul, init);
printf("%lld\n", ret.arr[1][1]);
}
return 0;
}
Codechef Eugene and big number(矩阵快速幂)的更多相关文章
- A - Number Sequence(矩阵快速幂或者找周期)
Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * ...
- HDU 1005 Number Sequence【斐波那契数列/循环节找规律/矩阵快速幂/求(A * f(n - 1) + B * f(n - 2)) mod 7】
Number Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- UVA - 10689 Yet another Number Sequence 矩阵快速幂
Yet another Number Sequence Let’s define another number sequence, given by the foll ...
- 2017 ACM/ICPC Asia Regional Shenyang Online:number number number hdu 6198【矩阵快速幂】
Problem Description We define a sequence F: ⋅ F0=0,F1=1;⋅ Fn=Fn−1+Fn−2 (n≥2). Give you an integer k, ...
- Yet Another Number Sequence——[矩阵快速幂]
Description Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recur ...
- HDU 1005 Number Sequence(矩阵快速幂,快速幂模板)
Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1 ...
- HDU - 1005 Number Sequence 矩阵快速幂
HDU - 1005 Number Sequence Problem Description A number sequence is defined as follows:f(1) = 1, f(2 ...
- HDU - 1005 -Number Sequence(矩阵快速幂系数变式)
A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) m ...
- CF - 392 C. Yet Another Number Sequence (矩阵快速幂)
CF - 392 C. Yet Another Number Sequence 题目传送门 这个题看了十几分钟直接看题解了,然后恍然大悟,发现纸笔难于描述于是乎用Tex把初始矩阵以及转移矩阵都敲了出来 ...
随机推荐
- vue-cli webpack配置cdn路径 以及 上线之后的字体文件跨域处理
昨天搞了一下vue项目打包之后静态资源走阿里云cdn. 配置了半天,终于找到了设置的地方 config/index.js 里面设置build 下的 assetsPublicPath 打包的时候便可以添 ...
- 【java】类成员的访问限制关系
- 采用Atlas+Keepalived实现MySQL读写分离、读负载均衡
========================================================================================== 一.基础介绍 == ...
- matplotlib学习记录 五
# 绘制电影票房竖条形图 from matplotlib import pyplot as plt a = ["战狼2","速度与激情8","功夫瑜伽 ...
- AD采样求平均STM32实现
iADC_read(, &u16NTC_1_Sample_Val_ARR[]); == ui8FirstSampleFlag) { ; i<; i++) { u16NTC_1_Sampl ...
- 字符串-POJ3974-Palindrome
Palindrome Time Limit: 15000MS Memory Limit: 65536K Description Andy the smart computer science stud ...
- 如何查看Android apk的包名?
有以下四种方法可以查看apk的包名,之后有别的方法,会接着更新文档的. 1. 安装APK包名查看器; 2. 源码AndroidManifest.xml中查看package包名; 3. 利用" ...
- Makefile基础(二)
上一章:C语言之Makefile基础(一) 上一章的Makefile写的中规中矩,比较繁琐,是为了讲清楚基本概念,其实Makefile有很多灵活的写法,可以写的更简洁,同时减少出错的可能 一个目标依赖 ...
- dwr介绍及配置
DWR 编辑 DWR(Direct Web Remoting)是一个用于改善web页面与Java类交互的远程服务器端Ajax开源框架,可以帮助开发人员开发包含AJAX技术的网站.它可以允许在浏览器里的 ...
- 一个通用的分页存储过程实现-SqlServer(附上sql源码,一键执行即刻搭建运行环境)
使用前提 查询表必须有ID字段,且该字段不能重复,建议为自增主键 背景 如果使用ADO.NET进行开发,在查询分页数据的时候一般都是使用分页存储过程来实现的,本文提供一种通用的分页存储过程,只需要传入 ...