Leetcode4--->求两个排序数组的中位数
题目:给定两个排序数组,求两个排序数组的中位数,要求时间复杂度为O(log(m+n))
举例:
Example 1:
nums1 = [1, 3]
nums2 = [2] The median is 2.0
Example 2:
nums1 = [1, 2]
nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 解题思路: 1. 假设nums1.length = m, nums2.length = n; m < n;
2. 若(m + n) % 2 == 0, 表示两数组之和为偶数,应该是有两个中位数,因此最终结果为第9行的代码所示。否则,结果为第7行的代码所示。
3. 为了使得方法的统一,在最初时,对数组进行处理,统一使得传进方法的短数组为nums1,即第14行代码所示。
4. 如果len1-start1 == 0,则表示nums1已经全部加入前k个了,则第k个为nums2[k -1]; 在方法findKth()中的k是一直变化的,初始时,k为两个数组中排序之后的第k个数的位置;k在方法中的真正含义为“还需要找到多少个数才能达到k个”;因此假设nums1.length ==0;,此时len1-start1 == 0, 则中位数就是nums2[k - 1],即在nums1中找到了0个数,还需要找k个数,第k个数就是nums[k - 1];
5. 如果k == 1,则表示前k-1小的数已经找过了,则第k个数肯定是nums1[start1]和nums2[start2]中较小的那个数。
6. 下面接着就是常规的情况:即nums1中包含一部分k,nums2中也包含一部分的k,因此就从每个数组的k/2那里开始比较(也相当于每次都会有一半的数被加入前k个,因此时间复杂度为O(log(m + n))):
采用p1和p2分别记录当前nums1和nums2需要比较的那个位,由于nums1比较短,因此有可能2/k的位置已经超出了nums1的长度,因此nums1还需要做特殊处理,即第19行代码所示;由于p1做了特殊处理,那p2也就要做特殊处理。总之,start1~p1和start2~p2的和一定为k。
1)若nums1[p1 - 1] < nums[p2 - 1],则表明【start1, p1)之间的值在前k个数中;
2)若nums[p1 - 1] > nums2[p2- 1],则表明【start2, p2)之间的值在前k个数中;
3)若两值相等,则表明【start1, p1)+【start2, p2)的个数为k,则结果直接返回其中一个即可。
为什么比较的p1和p2的前一个位的数,而不是p1和p2位置的数呢? 举例说明:假设start1== start2 == 0, 则p1 = Math.min(len1, k / 2); p2 = k - p1,即p1 + p2 == k;;假设p1 = 5, p2 = 7;, 则k = 12; 在数组中nums[5]其实是第6个数,nums[7]其实是第8个数,所以我们比较的是nums1[p1 - 1]与nums2[p2 - 1]的值; 代码如下:
public class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int len1 = nums1.length;
int len2 = nums2.length;
int size = len1 + len2;
if(size % 2 == 1)
return findKth(nums1, 0, len1, nums2, 0, len2, size / 2 + 1);
else
return (findKth(nums1, 0, len1, nums2, 0, len2, size / 2) + findKth(nums1, 0, len1, nums2, 0, len2, size / 2 + 1)) /2;
}
public double findKth(int[] nums1, int start1, int len1, int[] nums2, int start2, int len2, int k)
{
if(len1 - start1 > len2 -start2) // 传进来的时候统一让短的数组为nums1
return findKth(nums2, start2, len2, nums1, start1, len1, k);
if(len1 - start1 == 0) // 表示nums1已经全部加入前K个了,第k个为nums2[k - 1];
return nums2[k - 1];
if(k == 1)
return Math.min(nums1[start1], nums2[start2]); // k==1表示已经找到第k-1小的数,下一个数为两个数组start开始的最小值
int p1 = start1 + Math.min(len1 - start1, k / 2); // p1和p2记录当前需要比较的那个位
int p2 = start2 + k - p1 + start1;
if(nums1[p1 - 1] < nums2[p2 - 1])
return findKth(nums1, p1, len1, nums2, start2, len2, k - p1 + start1);
else if(nums1[p1 - 1] > nums2[p2 -1])
return findKth(nums1, start1, len1, nums2, p2, len2, k - p2 + start2);
else
return nums1[p1 - 1]; }
}
Leetcode4--->求两个排序数组的中位数的更多相关文章
- leetcode4:两个排序数组的中位数
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 1.我的思路:直接用sort,时间复杂度应如 ...
- LeetCode:4_Median of Two Sorted Arrays | 求两个排序数组的中位数 | Hard
题目: There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the ...
- 2.Median of Two Sorted Arrays (两个排序数组的中位数)
要求:Median of Two Sorted Arrays (求两个排序数组的中位数) 分析:1. 两个数组含有的数字总数为偶数或奇数两种情况.2. 有数组可能为空. 解决方法: 1.排序法 时间复 ...
- LeetCode4. 两个排序数组的中位数
4. 两个排序数组的中位数 问题描述 There are two sorted arrays nums1 and nums2 of size m and n respectively.Find the ...
- LeetCode-4. 两个排序数组的中位数(详解)
链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/description/ 有两个大小为 m 和 n 的排序数组 nums ...
- LeetCode(4):两个排序数组的中位数
Hard! 题目描述: 有两个大小为 m 和 n 的排序数组 nums1 和 nums2 . 请找出两个排序数组的中位数并且总的运行时间复杂度为 O(log (m+n)) . 示例 1: nums1 ...
- JavaScript实现获取两个排序数组的中位数算法示例
本文实例讲述了JavaScript排序代码实现获取两个排序数组的中位数算法.分享给大家供大家参考,具体如下: 题目 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个 ...
- 求两个排序数组中位数 C++
题目描述: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 你可以假设 nums1 和 nu ...
- [Swift]LeetCode4. 两个排序数组的中位数 | Median of Two Sorted Arrays
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...
随机推荐
- angularjs实现导航菜单切换高亮
<ul> <li ng-repeat="(index, item) in headerList"> <a ui-sref="{{item.h ...
- MySQL基础环境_安装配置教程(Windows7 64或Centos7.2 64、MySQL5.7)
MySQL基础环境_安装配置教程(Windows7 64或Centos7.2 64.MySQL5.7) 安装包版本 1) VMawre-workstation版本包 地址: https://m ...
- Protocol Buffer学习教程之语法手册(二)
1.说明 此向导介绍如何使用protocol buffer language创建一个自己的protocolbuffer文件,包括语法与如何通过“.proto”文件生成数据访问的类,此处只介绍proto ...
- pc端常见布局---水平居中布局 单元素不定宽度
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- Leetcode重点 250题-前400 题
删除不常考,面试低频出现题目 删除重复代码题目(例:链表反转206题,代码在234题出现过) 删除过于简单题目(例:100题:Same Tree) 删除题意不同,代码基本相同题目(例:136 & ...
- TDB文件介绍
samba在运行时,Samba 存储许多信息,从本地密码到希望从中收到信息的一系列客户端.这类数据其中一些是暂时的,在 Samba 重启时可能会被丢弃,但是另一些却是永久的,不会被丢弃.这类数据可能是 ...
- oracle没有监听和监听程序无法找到适用于客户机连接的例程
1.无监听,可以尝试下以下几种办法: 1)在net manager中重新配置监听.我的net manager监听点开不了,把ADMIN下的listener.ora删掉再去打开试试. 2)cmd中输入n ...
- c#和Java中的多态
多态:让一个对象表现出多种类型,写出通用的代码,最大限度的屏蔽各个子类之间的差异性. c#举例: 将父类的方法标记为虚方法 ,使用关键字 virtual,这个函数可以被子类重新写一个遍. //真的鸭子 ...
- Java语言中的异常处理
Java语言中的异常处理包括声明异常.抛出异常.捕获异常和处理异常四个环节. throw用于抛出异常. throws关键字可以在方法上声明该方法要抛出的异常,然后在方法内部通过throw抛出异 ...
- linux文件属性描述(inode,block)
1.ls -lhi 文字解释: 第一列:inode索引节点编号(人的身份证,全国唯一) 系统读取文件时首先通过文件名找到inode,然后才能读取到文件内容. 第二列:文件类型及权限(共10个字符, ...