菜鸟之路——机器学习之KNN算法个人理解及Python实现
KNN(K Nearest Neighbor)
还是先记几个关键公式
距离:一般用Euclidean distance E(x,y)√∑(xi-yi)2 。名字这么高大上,就是初中学的两点间的距离嘛。
还有其他距离的衡量公式,余弦值(cos),相关度(correlation) 曼哈顿距离(manhatann distance)。我觉得针对于KNN算法还是Euclidean distance最好,最直观。
然后就选择最近的K个点。根据投票原则分类出结果。
首先利用sklearn自带的的iris数据集和KNN算法运行一下
from sklearn import neighbors #knn算法在neighbor包里
from sklearn import datasets #包含常用的机器学习的包 knn=neighbors.KNeighborsClassifier() #新建knn算法类 iris=datasets.load_iris() #加载虹膜这种花的数据
#print(iris) #这是个字典有data,target,target_name,这三个key,太多了,就打印出来了 knn.fit(iris.data,iris.target)
print(knn.fit(iris.data,iris.target)) #我也不知道为什么要这样fit一下形成一个模型。打印一下看看我觉得应该是为了记录一下数据的信息吧 predictedLabel=knn.predict([[0.1,0.2,0.3,0.4]])#预测一下
print(predictedLabel)
print("predictedName:",iris.target_names[predictedLabel[0]])
然后就自己写KNN算法啦
import csv
import random
import math
import operator #加载数据的
def LoadDataset(filename,split):#split这个参数是用来分开训练集与测试集的,split属于[0,1]。即有多大的概率将所有数据选取为训练集
trainingSet=[]
testSet=[]
with open(filename,'rt') as csvfile:
lines=csv.reader(csvfile)
dataset=list(lines)
for x in range(len(dataset)-1):
for y in range(4):
dataset[x][y]=float(dataset[x][y])
if random.random()<split: #random.random()生成一个[0,1]之间的随机数
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x])
return [trainingSet,testSet] #此函数用来计算两点之间的距离
def enclideanDinstance(instance1,instance2,length):#legdth为维度
distance=0
for x in range(length):
distance+=pow((instance1[x]-instance2[x]),2)
return math.sqrt(distance) #此函数选取K个离testInstance最近的trainingSet里的实例
def getNeighbors(trainingSet,testInstance,k):
distances=[]
length=len(testInstance)-1
for x in range(len(trainingSet)):
dist=enclideanDinstance(testInstance,trainingSet[x],length)
distances.append([trainingSet[x],dist])
distances.sort(key=operator.itemgetter(1))#operator.itemgetter函数获取的不是值,而是定义了一个函数,取列表的第几个域的函数。
# sort中的key也是用来指定取待排序元素的哪一项进行排序
#这句的意思就是按照distances的第二个域进行排序
neighbors=[]
for x in range(k):
neighbors.append(distances[x][0])
return neighbors #这个函数就是从K的最邻近的实例中利用投票原则分类出结果
def getResponce(neighbors):
classVotes={}
for x in range(len(neighbors)):
responce=neighbors[x][-1]
if responce in classVotes:
classVotes[responce]+=1
else:
classVotes[responce] = 1
sortedVotes=sorted(classVotes.items(),key=operator.itemgetter(1),reverse=True)
return sortedVotes[0][0] #这个函数从测试结果与真实结果中得出正确率
def getAccuracy(testSet,predictions):
corrrect=0
for x in range(len(testSet)):
if testSet[x][-1] ==predictions[x]:
corrrect+=1
return (corrrect/float(len(testSet)))*100 def main():
split=0.67 #将选取67%的数据作为训练集
[trainingSet,testSet]=LoadDataset('irisdata.txt',split)
print("trainingSet:",len(trainingSet),trainingSet)
print("testSet",len(testSet),testSet) predictions=[]
k=3 #选取三个最邻近的实例
#测试所有测试集
for x in range(len(testSet)):
neighbors=getNeighbors(trainingSet,testSet[x],k)
result=getResponce(neighbors)
predictions.append(result)
print(">predicted",result,",actual=",testSet[x][-1]) accuracy=getAccuracy(testSet,predictions)
print("Accuracy:",accuracy,r"%") if __name__ == '__main__':
main()
里面有我对代码的理解
运行结果为
trainingSet: 110 [[4.9, 3.0, 1.4, 0.2, 'Iris-setosa'], [4.7, 3.2, 1.3, 0.2, 'Iris-setosa'], [5.0, 3.6, 1.4, 0.2, 'Iris-setosa'], [5.4, 3.9, 1.7, 0.4, 'Iris-setosa'], [4.6, 3.4, 1.4, 0.3, 'Iris-setosa'], [4.4, 2.9, 1.4, 0.2, 'Iris-setosa'], [4.9, 3.1, 1.5, 0.1, 'Iris-setosa'], [5.4, 3.7, 1.5, 0.2, 'Iris-setosa'], [4.8, 3.4, 1.6, 0.2, 'Iris-setosa'], [4.3, 3.0, 1.1, 0.1, 'Iris-setosa'], [5.8, 4.0, 1.2, 0.2, 'Iris-setosa'], [5.7, 4.4, 1.5, 0.4, 'Iris-setosa'], [5.4, 3.9, 1.3, 0.4, 'Iris-setosa'], [5.7, 3.8, 1.7, 0.3, 'Iris-setosa'], [5.4, 3.4, 1.7, 0.2, 'Iris-setosa'], [4.6, 3.6, 1.0, 0.2, 'Iris-setosa'], [4.8, 3.4, 1.9, 0.2, 'Iris-setosa'], [5.0, 3.0, 1.6, 0.2, 'Iris-setosa'], [5.0, 3.4, 1.6, 0.4, 'Iris-setosa'], [5.2, 3.5, 1.5, 0.2, 'Iris-setosa'], [4.7, 3.2, 1.6, 0.2, 'Iris-setosa'], [4.8, 3.1, 1.6, 0.2, 'Iris-setosa'], [5.4, 3.4, 1.5, 0.4, 'Iris-setosa'], [5.2, 4.1, 1.5, 0.1, 'Iris-setosa'], [4.9, 3.1, 1.5, 0.1, 'Iris-setosa'], [5.0, 3.2, 1.2, 0.2, 'Iris-setosa'], [5.5, 3.5, 1.3, 0.2, 'Iris-setosa'], [4.4, 3.0, 1.3, 0.2, 'Iris-setosa'], [5.0, 3.5, 1.3, 0.3, 'Iris-setosa'], [4.5, 2.3, 1.3, 0.3, 'Iris-setosa'], [4.4, 3.2, 1.3, 0.2, 'Iris-setosa'], [5.1, 3.8, 1.9, 0.4, 'Iris-setosa'], [4.8, 3.0, 1.4, 0.3, 'Iris-setosa'], [5.1, 3.8, 1.6, 0.2, 'Iris-setosa'], [4.6, 3.2, 1.4, 0.2, 'Iris-setosa'], [5.3, 3.7, 1.5, 0.2, 'Iris-setosa'], [7.0, 3.2, 4.7, 1.4, 'Iris-versicolor'], [6.4, 3.2, 4.5, 1.5, 'Iris-versicolor'], [5.5, 2.3, 4.0, 1.3, 'Iris-versicolor'], [6.5, 2.8, 4.6, 1.5, 'Iris-versicolor'], [5.7, 2.8, 4.5, 1.3, 'Iris-versicolor'], [4.9, 2.4, 3.3, 1.0, 'Iris-versicolor'], [6.6, 2.9, 4.6, 1.3, 'Iris-versicolor'], [5.0, 2.0, 3.5, 1.0, 'Iris-versicolor'], [5.9, 3.0, 4.2, 1.5, 'Iris-versicolor'], [6.0, 2.2, 4.0, 1.0, 'Iris-versicolor'], [5.6, 2.9, 3.6, 1.3, 'Iris-versicolor'], [6.7, 3.1, 4.4, 1.4, 'Iris-versicolor'], [5.6, 3.0, 4.5, 1.5, 'Iris-versicolor'], [5.8, 2.7, 4.1, 1.0, 'Iris-versicolor'], [5.6, 2.5, 3.9, 1.1, 'Iris-versicolor'], [5.9, 3.2, 4.8, 1.8, 'Iris-versicolor'], [6.3, 2.5, 4.9, 1.5, 'Iris-versicolor'], [6.4, 2.9, 4.3, 1.3, 'Iris-versicolor'], [6.8, 2.8, 4.8, 1.4, 'Iris-versicolor'], [6.7, 3.0, 5.0, 1.7, 'Iris-versicolor'], [6.0, 2.9, 4.5, 1.5, 'Iris-versicolor'], [5.7, 2.6, 3.5, 1.0, 'Iris-versicolor'], [5.5, 2.4, 3.8, 1.1, 'Iris-versicolor'], [5.8, 2.7, 3.9, 1.2, 'Iris-versicolor'], [6.0, 2.7, 5.1, 1.6, 'Iris-versicolor'], [5.4, 3.0, 4.5, 1.5, 'Iris-versicolor'], [6.0, 3.4, 4.5, 1.6, 'Iris-versicolor'], [6.3, 2.3, 4.4, 1.3, 'Iris-versicolor'], [5.6, 3.0, 4.1, 1.3, 'Iris-versicolor'], [5.5, 2.6, 4.4, 1.2, 'Iris-versicolor'], [6.1, 3.0, 4.6, 1.4, 'Iris-versicolor'], [5.8, 2.6, 4.0, 1.2, 'Iris-versicolor'], [5.0, 2.3, 3.3, 1.0, 'Iris-versicolor'], [5.6, 2.7, 4.2, 1.3, 'Iris-versicolor'], [5.7, 3.0, 4.2, 1.2, 'Iris-versicolor'], [5.7, 2.9, 4.2, 1.3, 'Iris-versicolor'], [6.2, 2.9, 4.3, 1.3, 'Iris-versicolor'], [5.1, 2.5, 3.0, 1.1, 'Iris-versicolor'], [5.7, 2.8, 4.1, 1.3, 'Iris-versicolor'], [6.3, 3.3, 6.0, 2.5, 'Iris-virginica'], [5.8, 2.7, 5.1, 1.9, 'Iris-virginica'], [7.1, 3.0, 5.9, 2.1, 'Iris-virginica'], [6.5, 3.0, 5.8, 2.2, 'Iris-virginica'], [7.6, 3.0, 6.6, 2.1, 'Iris-virginica'], [4.9, 2.5, 4.5, 1.7, 'Iris-virginica'], [6.5, 3.2, 5.1, 2.0, 'Iris-virginica'], [6.4, 2.7, 5.3, 1.9, 'Iris-virginica'], [5.8, 2.8, 5.1, 2.4, 'Iris-virginica'], [6.4, 3.2, 5.3, 2.3, 'Iris-virginica'], [6.5, 3.0, 5.5, 1.8, 'Iris-virginica'], [7.7, 2.6, 6.9, 2.3, 'Iris-virginica'], [6.0, 2.2, 5.0, 1.5, 'Iris-virginica'], [6.9, 3.2, 5.7, 2.3, 'Iris-virginica'], [7.7, 2.8, 6.7, 2.0, 'Iris-virginica'], [6.3, 2.7, 4.9, 1.8, 'Iris-virginica'], [7.2, 3.2, 6.0, 1.8, 'Iris-virginica'], [6.2, 2.8, 4.8, 1.8, 'Iris-virginica'], [6.1, 3.0, 4.9, 1.8, 'Iris-virginica'], [6.4, 2.8, 5.6, 2.1, 'Iris-virginica'], [7.4, 2.8, 6.1, 1.9, 'Iris-virginica'], [6.4, 2.8, 5.6, 2.2, 'Iris-virginica'], [6.1, 2.6, 5.6, 1.4, 'Iris-virginica'], [7.7, 3.0, 6.1, 2.3, 'Iris-virginica'], [6.3, 3.4, 5.6, 2.4, 'Iris-virginica'], [6.4, 3.1, 5.5, 1.8, 'Iris-virginica'], [6.9, 3.1, 5.4, 2.1, 'Iris-virginica'], [6.7, 3.1, 5.6, 2.4, 'Iris-virginica'], [6.9, 3.1, 5.1, 2.3, 'Iris-virginica'], [5.8, 2.7, 5.1, 1.9, 'Iris-virginica'], [6.8, 3.2, 5.9, 2.3, 'Iris-virginica'], [6.7, 3.0, 5.2, 2.3, 'Iris-virginica'], [6.3, 2.5, 5.0, 1.9, 'Iris-virginica'], [6.5, 3.0, 5.2, 2.0, 'Iris-virginica'], [6.2, 3.4, 5.4, 2.3, 'Iris-virginica']]
testSet 40 [[5.1, 3.5, 1.4, 0.2, 'Iris-setosa'], [4.6, 3.1, 1.5, 0.2, 'Iris-setosa'], [5.0, 3.4, 1.5, 0.2, 'Iris-setosa'], [4.8, 3.0, 1.4, 0.1, 'Iris-setosa'], [5.1, 3.5, 1.4, 0.3, 'Iris-setosa'], [5.1, 3.8, 1.5, 0.3, 'Iris-setosa'], [5.1, 3.7, 1.5, 0.4, 'Iris-setosa'], [5.1, 3.3, 1.7, 0.5, 'Iris-setosa'], [5.2, 3.4, 1.4, 0.2, 'Iris-setosa'], [5.5, 4.2, 1.4, 0.2, 'Iris-setosa'], [4.9, 3.1, 1.5, 0.1, 'Iris-setosa'], [5.1, 3.4, 1.5, 0.2, 'Iris-setosa'], [5.0, 3.5, 1.6, 0.6, 'Iris-setosa'], [5.0, 3.3, 1.4, 0.2, 'Iris-setosa'], [6.9, 3.1, 4.9, 1.5, 'Iris-versicolor'], [6.3, 3.3, 4.7, 1.6, 'Iris-versicolor'], [5.2, 2.7, 3.9, 1.4, 'Iris-versicolor'], [6.1, 2.9, 4.7, 1.4, 'Iris-versicolor'], [6.2, 2.2, 4.5, 1.5, 'Iris-versicolor'], [6.1, 2.8, 4.0, 1.3, 'Iris-versicolor'], [6.1, 2.8, 4.7, 1.2, 'Iris-versicolor'], [6.6, 3.0, 4.4, 1.4, 'Iris-versicolor'], [5.5, 2.4, 3.7, 1.0, 'Iris-versicolor'], [6.7, 3.1, 4.7, 1.5, 'Iris-versicolor'], [5.5, 2.5, 4.0, 1.3, 'Iris-versicolor'], [6.3, 2.9, 5.6, 1.8, 'Iris-virginica'], [7.3, 2.9, 6.3, 1.8, 'Iris-virginica'], [6.7, 2.5, 5.8, 1.8, 'Iris-virginica'], [7.2, 3.6, 6.1, 2.5, 'Iris-virginica'], [6.8, 3.0, 5.5, 2.1, 'Iris-virginica'], [5.7, 2.5, 5.0, 2.0, 'Iris-virginica'], [7.7, 3.8, 6.7, 2.2, 'Iris-virginica'], [5.6, 2.8, 4.9, 2.0, 'Iris-virginica'], [6.7, 3.3, 5.7, 2.1, 'Iris-virginica'], [7.2, 3.0, 5.8, 1.6, 'Iris-virginica'], [7.9, 3.8, 6.4, 2.0, 'Iris-virginica'], [6.3, 2.8, 5.1, 1.5, 'Iris-virginica'], [6.0, 3.0, 4.8, 1.8, 'Iris-virginica'], [6.7, 3.3, 5.7, 2.5, 'Iris-virginica'], [5.9, 3.0, 5.1, 1.8, 'Iris-virginica']]
>predicted Iris-setosa ,actual= Iris-setosa
>predicted Iris-setosa ,actual= Iris-setosa
>predicted Iris-setosa ,actual= Iris-setosa
>predicted Iris-setosa ,actual= Iris-setosa
>predicted Iris-setosa ,actual= Iris-setosa
>predicted Iris-setosa ,actual= Iris-setosa
>predicted Iris-setosa ,actual= Iris-setosa
>predicted Iris-setosa ,actual= Iris-setosa
>predicted Iris-setosa ,actual= Iris-setosa
>predicted Iris-setosa ,actual= Iris-setosa
>predicted Iris-setosa ,actual= Iris-setosa
>predicted Iris-setosa ,actual= Iris-setosa
>predicted Iris-setosa ,actual= Iris-setosa
>predicted Iris-setosa ,actual= Iris-setosa
>predicted Iris-versicolor ,actual= Iris-versicolor
>predicted Iris-versicolor ,actual= Iris-versicolor
>predicted Iris-versicolor ,actual= Iris-versicolor
>predicted Iris-versicolor ,actual= Iris-versicolor
>predicted Iris-versicolor ,actual= Iris-versicolor
>predicted Iris-versicolor ,actual= Iris-versicolor
>predicted Iris-versicolor ,actual= Iris-versicolor
>predicted Iris-versicolor ,actual= Iris-versicolor
>predicted Iris-versicolor ,actual= Iris-versicolor
>predicted Iris-versicolor ,actual= Iris-versicolor
>predicted Iris-versicolor ,actual= Iris-versicolor
>predicted Iris-virginica ,actual= Iris-virginica
>predicted Iris-virginica ,actual= Iris-virginica
>predicted Iris-virginica ,actual= Iris-virginica
>predicted Iris-virginica ,actual= Iris-virginica
>predicted Iris-virginica ,actual= Iris-virginica
>predicted Iris-virginica ,actual= Iris-virginica
>predicted Iris-virginica ,actual= Iris-virginica
>predicted Iris-virginica ,actual= Iris-virginica
>predicted Iris-virginica ,actual= Iris-virginica
>predicted Iris-virginica ,actual= Iris-virginica
>predicted Iris-virginica ,actual= Iris-virginica
>predicted Iris-versicolor ,actual= Iris-virginica
>predicted Iris-virginica ,actual= Iris-virginica
>predicted Iris-virginica ,actual= Iris-virginica
>predicted Iris-virginica ,actual= Iris-virginica
Accuracy: 97.5 %
以下拓展几个知识点
1,random库的一些用法
random.randint(1,10) # 产生 1 到 10 的一个整数型随机数
random.random() # 产生 0 到 1 之间的随机浮点数
random.uniform(1.1,5.4) # 产生 1.1 到 5.4 之间的随机浮点数,区间可以不是整数
random.choice('tomorrow') # 从序列中随机选取一个元素
random.randrange(1,100,2) # 生成从1到100的间隔为2的随机整数
random.shuffle(a) # 将序列a中的元素顺序打乱
2,排序函数
sorted(exapmle[, cmp[, key[, reverse]]])
example.sort(cmp[, key[, reverse]])
example是和待排序序列
cmp为函数,指定排序时进行比较的函数,可以指定一个函数或者lambda函数
key为函数,指定取待排序元素的哪一项进行排序
reverse实现降序排序,需要提供一个布尔值,默认为False(升序排列)。
程序中的第53行 sortedVotes=sorted(classVotes.items(),key=operator.itemgetter(1),reverse=True)就是按照sortedVotes的第二个域进行降序排列
key=operator.itemgetter(n)就是按照第n+1个域
写完喽,图书馆也该闭馆了。学习的感觉真舒服。接下来就是最出名的SVM算法啦
菜鸟之路——机器学习之KNN算法个人理解及Python实现的更多相关文章
- 菜鸟之路——机器学习之BP神经网络个人理解及Python实现
关键词: 输入层(Input layer).隐藏层(Hidden layer).输出层(Output layer) 理论上如果有足够多的隐藏层和足够大的训练集,神经网络可以模拟出任何方程.隐藏层多的时 ...
- 菜鸟之路——机器学习之SVM分类器学习理解以及Python实现
SVM分类器里面的东西好多呀,碾压前两个.怪不得称之为深度学习出现之前表现最好的算法. 今天学到的也应该只是冰山一角,懂了SVM的一些原理.还得继续深入学习理解呢. 一些关键词: 超平面(hyper ...
- 菜鸟之路——机器学习之Kmeans聚类个人理解及Python实现
一些概念 相关系数:衡量两组数据相关性 决定系数:(R2值)大概意思就是这个回归方程能解释百分之多少的真实值. Kmeans聚类大致就是选择K个中心点.不断遍历更新中心点的位置.离哪个中心点近就属于哪 ...
- JavaScript机器学习之KNN算法
译者按: 机器学习原来很简单啊,不妨动手试试! 原文: Machine Learning with JavaScript : Part 2 译者: Fundebug 为了保证可读性,本文采用意译而非直 ...
- 机器学习之KNN算法
1 KNN算法 1.1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属 ...
- 机器学习:k-NN算法(也叫k近邻算法)
一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集 ...
- 机器学习笔记--KNN算法2-实战部分
本文申明:本系列的所有实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. 一案例导入:玛利亚小姐最近寂寞了, ...
- 机器学习笔记--KNN算法1
前言 Hello ,everyone. 我是小花.大四毕业,留在学校有点事情,就在这里和大家吹吹我们的狐朋狗友算法---KNN算法,为什么叫狐朋狗友算法呢,在这里我先卖个关子,且听我慢慢道来. 一 K ...
- 机器学习入门-Knn算法
knn算法不需要进行训练, 耗时,适用于多标签分类情况 1. 将输入的单个测试数据与每一个训练数据依据特征做一个欧式距离. 2. 将求得的欧式距离进行降序排序,取前n_个 3. 计算这前n_个的y值的 ...
随机推荐
- 两数相除赋值整数变量(T-SQL)
MSSQL: DECLARE @_pagecount INT; ; SELECT @_pagecount; 结果为1 Mysql: BEGIN DECLARE _pagecount INT; ; SE ...
- ubuntu16.4 配置logstash6.3.2 kibanan6.3.2
1. 官网下载 https://artifacts.elastic.co/downloads/logstash/logstash-6.3.2.tar.gz https://www.elastic.co ...
- java Vamei快速教程13 String类
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 之前的Java基础系列中讨论了Java最核心的概念,特别是面向对象的基础.在Jav ...
- Java 虚拟机枚举 GC Roots 解析
JVM 堆内存模型镇楼. 读<深入理解 Java 虚拟机>第三章GC算法,关于 GC Roots 枚举的段落没说透彻,理解上遇到困惑.因此对这点进行扩展并记录,发现国内各种博客写来写去都是 ...
- 深入理解计算机系统_3e 第二章家庭作业 CS:APP3e chapter 2 homework
初始完成日期:2017.9.26 许可:除2.55对应代码外(如需使用请联系 randy.bryant@cs.cmu.edu),任何人可以自由的使用,修改,分发本文档的代码. 本机环境: (有一些需要 ...
- 导航条(Navbar)
1.添加.navbar-fixed-top类可以让导航条固定的页面的顶部,固定的导航条会遮住页面上其它的内容,除非给body元素设置padding,导航条默认高度为50px ,因此可以给body元素设 ...
- React后台管理系统-商品列表搜索框listSearch组件
1.商品列表搜索框 2.搜索框页面的结构为 <div className="row search-wrap"> <div classN ...
- java从键盘输入学生成绩,找出最高分,并输出学生成绩等级。
/*从键盘输入学生成绩,找出最高分,并输出学生成绩等级:成绩 >=最高分-10 等级为A成绩 >=最高分-20 等级为B成绩 >=最高分-30 等级为C其余为 等级为D 提示:先输入 ...
- 1143: [CTSC2008]祭祀river
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4018 Solved: 2048[Submit][Status][Discuss] Descript ...
- PHP array_multisort()函数超详细理解
项目中用到这个函数了 ,起初对这个函数一直是懵逼状态,文档都看的朦朦胧胧的 网上无意间看到这篇文章 ,写的超级详细,收藏了 . 当然要先放原地址:https://www.cnblogs.com/WuN ...