题目链接:https://vjudge.net/problem/HDU-3811

Permutation

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 496    Accepted Submission(s): 238

Problem Description
In combinatorics a permutation of a set S with N elements is a listing of the elements of S in some order (each element occurring exactly once). There are N! permutations of a set which has N elements. For example, there are six permutations of the set {1,2,3}, namely [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and [3,2,1]. 
But Bob think that some permutations are more beautiful than others. Bob write some pairs of integers(Ai, Bi) to distinguish beautiful permutations from ordinary ones. A permutation is considered beautiful if and only if for some i the Ai-th element of it is Bi. We want to know how many permutations of set {1, 2, ...., N} are beautiful.
 
Input
The first line contains an integer T indicating the number of test cases.
There are two integers N and M in the first line of each test case. M lines follow, the i-th line contains two integers Ai and Bi.

Technical Specification
1. 1 <= T <= 50
2. 1 <= N <= 17
3. 1 <= M <= N*N
4. 1 <= Ai, Bi <= N

 
Output
For each test case, output the case number first. Then output the number of beautiful permutations in a line.
 
Sample Input
3
3 2
1 1
2 1
3 2
1 1
2 2
4 3
1 1
1 2
1 3
 
Sample Output
Case 1: 4
Case 2: 3
Case 3: 18
 
Author
hanshuai
 
Source
 
Recommend
lcy
 
 
题意:
给出m个(A,B),问n的全排列中有多少个满足:至少存在一个i,使得第Ai位为Bi?
 
 
题解:
1.状压DP,设dp[status][has]为:状态为status(前面含有哪几个数),且是否已经满足要求(has)的情况下有多少种。
2.剩下的就是类似TSP的状态转移了(感觉又像是TSP,又像是数位DP)。
 
 
代码如下:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e5;
const int MAXN = (<<)+; bool g[][];
LL dp[MAXN][];
int cnt[MAXN]; void init()
{
for(int s = ; s<MAXN; s++)
{
cnt[s] = ;
for(int j = ; j<; j++)
if(s&(<<j)) cnt[s]++;
}
} int main()
{
init();
int T, n, m, kase = ;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &m);
memset(g, false, sizeof(g));
for(int i = ; i<=m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
g[u][v] = true;
} memset(dp, , sizeof(dp));
dp[][] = ;
for(int s = ; s<(<<n); s++)
{
for(int i = ; i<; i++)
{
for(int j = ; j<n; j++)
if(!(s&(<<j)))
dp[s|(<<j)][i|g[cnt[s]+][j+]] += dp[s][i];
}
}
printf("Case %d: %lld\n", ++kase, dp[(<<n)-][]);
}
}

HDU3811 Permutation —— 状压DP的更多相关文章

  1. HDU 3811 Permutation 状压dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3811 Permutation Time Limit: 6000/3000 MS (Java/Othe ...

  2. HDU 4917 Permutation(拓扑排序 + 状压DP + 组合数)

    题目链接 Permutation 题目大意:给出n,和m个关系,每个关系为ai必须排在bi的前面,求符合要求的n的全排列的个数. 数据规模为n <= 40,m <= 20. 直接状压DP空 ...

  3. ZOJ 3777 - Problem Arrangement - [状压DP][第11届浙江省赛B题]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 Time Limit: 2 Seconds      Me ...

  4. CodeForces 327E Axis Walking(状压DP+卡常技巧)

    Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub ...

  5. ZOJ - 3777(状压dp)

    The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward i ...

  6. zoj3777 Problem Arrangement(状压dp,思路赞)

    The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward i ...

  7. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  8. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

  9. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

随机推荐

  1. 【温故知新】——CSS黑魔法小技巧可以少些不必要的js

    前言:这篇文章是转载[前端开发博客]的一篇技术文章,并非本人所写.只是个人觉得很实用,所以分享给大家.原文链接:github.com 1.利用 CSS 的 content 属性 attr 抓取资料需求 ...

  2. 转: https 加密通信流程

    https 加密通信流程当用户在浏览器中输入一个以https开头的网址时,便开启了浏览器与被访问站点之间的加密通信.下面我们以一个用户访问https://qbox.me为例,给读者展现一下SSL/TL ...

  3. pythonkeywordis与 ==的差别

    pythonkeywordis与 ==的差别 近期在学习Python.总结一下小知识点. Python中的对象包括三要素:id.type.value 当中id用来唯一标识一个对象.type标识对象的类 ...

  4. ie 浏览器无法保存cookie,且与域名包括了下划线(_)有关系的问题

    <span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255) ...

  5. javascript关闭弹出窗体时刷新父窗体和居中显示弹出窗

    居中显示用到了moveTO()方法: 关闭弹出窗时刷新父窗体用到了window.opener方法: 父窗体代码例如以下: <%@ Page Language="C#" Aut ...

  6. 使用Chrome(PC)调试移动设备上的网页

    最早开始调试移动端网页时,本人都是采取PC上改几行代码,手机上刷新一下看效果这种笨方法来开发的,效率低而且容易让人抓狂.最近偶然发现原来可以使用PC上的浏览器来调试移动设备,不由得感叹相逢恨晚. 工具 ...

  7. iOS自己定义对象保存到本地文件

    我是将聊天记录存到本地,里边用到了自己定义的对象.把数据转成Data格式存到本地.在转Data格式的时候报错了.这时候须要先将自己定义对象进行归档才干够转Data格式. 方法例如以下: 一.在.h文件 ...

  8. 玩转 eclipse:[1]如何快速找错-debug

    本文摘自百度经验 原文地址如下: 玩转 eclipse:[1]如何快速找错-debu eclipse是软件开发人员必备的IDE之一. 由于语言障碍或者是经验不足,许多刚刚新手并不清楚如何高效使用ecl ...

  9. 在diy的文件系统上创建文件的流程

    [0]README 0.1) source code are from orange's implemention of a os , and for complete code , please v ...

  10. wpf 获取datagrid 模板列中的控件

    目前采用的 方法  (网上提供的一款) public static DataGridRow GetRow(DataGrid datagrid, int columnIndex)        {    ...