【BZOJ3745】[Coci2015]Norma

Description

Input

第1行,一个整数N;
第2~n+1行,每行一个整数表示序列a。

Output

输出答案对10^9取模后的结果。

Sample Input

4
2
4
1
4

Sample Output

109
【数据范围】
N <= 500000
1 <= a_i <= 10^8

题解:最近做这种题好像有点多啊~(虽然我基本上都没A)。

比较直接的想法就是找出区间的最大值mid,然后分治处理[l,mid-1]和[mid+1,r],但是这就要求我们在统计[l,r]的答案时,花费的时间不超过较短的那个区间的长度,于是比较难搞,所以我们还是考虑cdq分治。

我们从右往左枚举[l,mid]中的每个点i,设[i,mid]中的最小值为mn,最大值为mx。同时在[mid+1,r]中维护两个指针a,b,满足min[mid+1,a]>=mn,max[mid+1,b]<=mx。假设a<b,那么[mid+1,r]就被我们分成了三块,我们分别考虑j在每个块内的答案。

1.j<=a:

$ans+=mx\times mn\sum\limits_{j=mid+1}^a(j-i+1)$

等差数列算一下即可
2.a<j<=b:

$ans+=mx\times \sum\limits_{j=a+1}^bmin[a+1,j]\times(j-i+1)\\=mx\times(\sum\limits_{j=a+1}^bmin[a+1,j]*j-\sum\limits_{j=a+1}^bmid[a+1,j]*(i-1))$,

我们预处理出$\sum\limits_{j=a+1}^bmin[a+1,j]*j$和$\sum\limits_{j=a+1}^bmin[a+1,j]$即可。

3.b<j<=r:$ans+=\sum\limits_{j=b+1}^rmin[b+1,j]\times max[b+1,j] \times (j-i+1)=\sum\limits_{j=b+1}^rmin[b+1,j]\times max[b+1,j]\times j-\sum\limits_{j=b+1}^rmin[b+1,j]\times max[b+1,j]\times(i-1)$,

我们预处理出$\sum\limits_{j=b+1}^rmin[b+1,j]\times max[b+1,j]\times j$和$\sum\limits_{j=b+1}^rmin[b+1,j]\times max[b+1,j]$即可。

写完题解发现上面那一坨latex是什么玩意~太丑了将就看吧~

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn=500010;
const ll mod=1000000000;
const ll inf=1ll<<30;
int n;
ll ans;
ll v[maxn],sn[maxn],cn[maxn],sm[maxn],cm[maxn],sw[maxn],cw[maxn];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void solve(int l,int r)
{
if(l==r)
{
ans=(ans+v[l]*v[l])%mod;
return ;
}
int mid=l+r>>1,i,j,k;
ll a,b;
ll mx=0,mn=inf;
solve(l,mid),solve(mid+1,r);
for(sm[mid]=sn[mid]=sw[mid]=cm[mid]=cn[mid]=cw[mid]=0,i=mid+1;i<=r;i++)
{
mx=max(mx,v[i]),mn=min(mn,v[i]);
sm[i]=(sm[i-1]+mx)%mod,sn[i]=(sn[i-1]+mn)%mod,sw[i]=(sw[i-1]+mx*mn)%mod;
cm[i]=(cm[i-1]+mx*i)%mod,cn[i]=(cn[i-1]+mn*i)%mod;
cw[i]=(cw[i-1]+mx*mn%mod*i)%mod;
}
for(i=j=k=mid,mx=0,mn=inf;i>=l;i--)
{
mx=max(mx,v[i]),mn=min(mn,v[i]);
for(;j<r&&v[j]>=mn&&v[j+1]>=mn;j++);
for(;k<r&&v[k]<=mx&&v[k+1]<=mx;k++);
a=min(j,k),b=max(j,k);
ans=ans+mx*mn%mod*((mid+a-i-i+3)*(a-mid)/2%mod)%mod;
ans=((ans+cw[r]-cw[b]-(i-1)*(sw[r]-sw[b]))%mod+mod)%mod;
if(j<k) ans=(ans+mx*(cn[b]-cn[a]-(i-1)*(sn[b]-sn[a])%mod)%mod+mod)%mod;
else ans=(ans+mn*(cm[b]-cm[a]-(i-1)*(sm[b]-sm[a])%mod)%mod+mod)%mod;
}
}
int main()
{
n=rd();
int i;
for(i=1;i<=n;i++) v[i]=rd();
solve(1,n);
printf("%lld",ans);
return 0;
}
//3 1 2 1

【BZOJ3745】[Coci2015]Norma cdq分治的更多相关文章

  1. NORMA2 - Norma [cdq分治]

    题面 洛谷 你有一个长度为n的序列,定义这个序列中每个区间的价值是 \(Cost(i,j)=Min(Ai...Aj)∗Max(Ai...Aj)∗(j−i+1)Cost(i,j)=Min(A_{i}.. ...

  2. bzoj3745: [Coci2015]Norma 分治,单调队列

    链接 bzoj 思路 首先\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}\sum\limits_{k=i}^{j}max(a_k)\)可以用单调队列求解.参见 ...

  3. [BZOJ3745][COCI2015]Norma[分治]

    题意 题目链接 分析 考虑分治,记当前分治区间为 \(l,r\) . 枚举左端点,然后发现右端点无非三种情况: 极大极小值都在左边; 有一个在左边; 极大极小值都在右边; 考虑递推 \(l\) 的同时 ...

  4. BZOJ 3745: [Coci2015]Norma(分治)

    题意 给定一个正整数序列 \(a_1, a_2, \cdots, a_n\) ,求 \[ \sum_{i=1}^{n} \sum_{j=i}^{n} (j - i + 1) \min(a_i,a_{i ...

  5. bzoj 3745 [Coci2015]Norma——序列分治

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3745 如果分治,就能在本层仅算过 mid 的区间了. 可以从中间到左边地遍历左边,给右边两个 ...

  6. bzoj 3745: [Coci2015]Norma【分治】

    参考:https://blog.csdn.net/lych_cys/article/details/51203960 真的不擅长这种-- 分治,对于一个(l,r),先递归求出(l,mid),(mid+ ...

  7. bzoj3745: [Coci2015]Norma

    Description Input 第1行,一个整数N: 第2~n+1行,每行一个整数表示序列a. Output 输出答案对10^9取模后的结果. 预处理每个位置的数作为最小/大值向左延伸的最大距离, ...

  8. 【BZOJ3745】Norma(CDQ分治)

    [BZOJ3745]Norma(CDQ分治) 题面 BZOJ 洛谷 题解 这种问题直接做不好做,显然需要一定的优化.考虑\(CDQ\)分治. 现在唯一需要考虑的就是跨越当前中间节点的所有区间如何计算答 ...

  9. 【CF526F】Pudding Monsters cdq分治

    [CF526F]Pudding Monsters 题意:给你一个排列$p_i$,问你有对少个区间的值域段是连续的. $n\le 3\times 10^5$ 题解:bzoj3745 Norma 的弱化版 ...

随机推荐

  1. CodeForces - 103D Time to Raid Cowavans

    Discription As you know, the most intelligent beings on the Earth are, of course, cows. This conclus ...

  2. 【Kafka】《Kafka权威指南》——写数据

    不管是把 Kafka 作为消息队列.消息.总线还是数据存储平台来使用 ,总是需要有一个可以往 Kafka 写入数据的生产者和一个可以从 Kafka读取数据的消费者,或者一个兼具两种角 色的应用程序. ...

  3. Jackson是线程安全的吗

    网上说是线程安全的,内部代码用了ThreadLocal.Synchronized这些线程安全类和关键字,可以放心的用. 避免每次使用都new一个,全局配置一个ObjectManager的对象将大大减少 ...

  4. xamarin.ios 本地通知推送

    由于ios10版本以后UILocalNotification被标为弃用了,所以要添加新的本地通知推送功能,下面提供一些代码参考. 一.先在AppDelegate.cs上注册本地通知推送功能. publ ...

  5. MapWindowPoints

    中文名 MapWindowPoints Windows CE 1.0及以上版本 头文件 winuser.h 库文件 user32.lib MapWindowPoints函数把相对于一个窗口的坐标空间的 ...

  6. linux 下route命令

    参考:http://blog.sina.com.cn/s/blog_67146a750100zoyi.html 为了让设备能访问另一个子网,需要在设备里增加路由到子网络,下面是一些资料.基本操作如下: ...

  7. HBase1.0以上版本号的API改变

    HBase1.0以上版本号已经废弃了 HTableInterface,HTable,HBaseAdmin等API的使用.新增了一些API来实现之前的功能: Connectioninterface: C ...

  8. 聚合数据Android SDK 12306火车票查询订票演示示例

    1.聚合SDK是聚合数据平台,为移动开发者提供的免费数据接口.使用前请先到聚合平台(http://www.juhe.cn/)注册,申请相关数据. 2.下载聚合数据SDK,将开发包里的juhe_sdk_ ...

  9. ehcache缓存刷新问题

    ehcache可以设置时间来定时刷新缓存,但是这个只是清空值,key依旧保存着. 只有你第一次利用key获取值,key才会释放.

  10. python:如何判断字符串中的内容是否都为数字并且把字符串转换为数字

    使用str.isdigit();有两种使用方法 str.isdigit('12345') =====>True str.isdigit('aaaaa')======>False 或者 '1 ...