【BZOJ3745】[Coci2015]Norma

Description

Input

第1行,一个整数N;
第2~n+1行,每行一个整数表示序列a。

Output

输出答案对10^9取模后的结果。

Sample Input

4
2
4
1
4

Sample Output

109
【数据范围】
N <= 500000
1 <= a_i <= 10^8

题解:最近做这种题好像有点多啊~(虽然我基本上都没A)。

比较直接的想法就是找出区间的最大值mid,然后分治处理[l,mid-1]和[mid+1,r],但是这就要求我们在统计[l,r]的答案时,花费的时间不超过较短的那个区间的长度,于是比较难搞,所以我们还是考虑cdq分治。

我们从右往左枚举[l,mid]中的每个点i,设[i,mid]中的最小值为mn,最大值为mx。同时在[mid+1,r]中维护两个指针a,b,满足min[mid+1,a]>=mn,max[mid+1,b]<=mx。假设a<b,那么[mid+1,r]就被我们分成了三块,我们分别考虑j在每个块内的答案。

1.j<=a:

$ans+=mx\times mn\sum\limits_{j=mid+1}^a(j-i+1)$

等差数列算一下即可
2.a<j<=b:

$ans+=mx\times \sum\limits_{j=a+1}^bmin[a+1,j]\times(j-i+1)\\=mx\times(\sum\limits_{j=a+1}^bmin[a+1,j]*j-\sum\limits_{j=a+1}^bmid[a+1,j]*(i-1))$,

我们预处理出$\sum\limits_{j=a+1}^bmin[a+1,j]*j$和$\sum\limits_{j=a+1}^bmin[a+1,j]$即可。

3.b<j<=r:$ans+=\sum\limits_{j=b+1}^rmin[b+1,j]\times max[b+1,j] \times (j-i+1)=\sum\limits_{j=b+1}^rmin[b+1,j]\times max[b+1,j]\times j-\sum\limits_{j=b+1}^rmin[b+1,j]\times max[b+1,j]\times(i-1)$,

我们预处理出$\sum\limits_{j=b+1}^rmin[b+1,j]\times max[b+1,j]\times j$和$\sum\limits_{j=b+1}^rmin[b+1,j]\times max[b+1,j]$即可。

写完题解发现上面那一坨latex是什么玩意~太丑了将就看吧~

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn=500010;
const ll mod=1000000000;
const ll inf=1ll<<30;
int n;
ll ans;
ll v[maxn],sn[maxn],cn[maxn],sm[maxn],cm[maxn],sw[maxn],cw[maxn];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void solve(int l,int r)
{
if(l==r)
{
ans=(ans+v[l]*v[l])%mod;
return ;
}
int mid=l+r>>1,i,j,k;
ll a,b;
ll mx=0,mn=inf;
solve(l,mid),solve(mid+1,r);
for(sm[mid]=sn[mid]=sw[mid]=cm[mid]=cn[mid]=cw[mid]=0,i=mid+1;i<=r;i++)
{
mx=max(mx,v[i]),mn=min(mn,v[i]);
sm[i]=(sm[i-1]+mx)%mod,sn[i]=(sn[i-1]+mn)%mod,sw[i]=(sw[i-1]+mx*mn)%mod;
cm[i]=(cm[i-1]+mx*i)%mod,cn[i]=(cn[i-1]+mn*i)%mod;
cw[i]=(cw[i-1]+mx*mn%mod*i)%mod;
}
for(i=j=k=mid,mx=0,mn=inf;i>=l;i--)
{
mx=max(mx,v[i]),mn=min(mn,v[i]);
for(;j<r&&v[j]>=mn&&v[j+1]>=mn;j++);
for(;k<r&&v[k]<=mx&&v[k+1]<=mx;k++);
a=min(j,k),b=max(j,k);
ans=ans+mx*mn%mod*((mid+a-i-i+3)*(a-mid)/2%mod)%mod;
ans=((ans+cw[r]-cw[b]-(i-1)*(sw[r]-sw[b]))%mod+mod)%mod;
if(j<k) ans=(ans+mx*(cn[b]-cn[a]-(i-1)*(sn[b]-sn[a])%mod)%mod+mod)%mod;
else ans=(ans+mn*(cm[b]-cm[a]-(i-1)*(sm[b]-sm[a])%mod)%mod+mod)%mod;
}
}
int main()
{
n=rd();
int i;
for(i=1;i<=n;i++) v[i]=rd();
solve(1,n);
printf("%lld",ans);
return 0;
}
//3 1 2 1

【BZOJ3745】[Coci2015]Norma cdq分治的更多相关文章

  1. NORMA2 - Norma [cdq分治]

    题面 洛谷 你有一个长度为n的序列,定义这个序列中每个区间的价值是 \(Cost(i,j)=Min(Ai...Aj)∗Max(Ai...Aj)∗(j−i+1)Cost(i,j)=Min(A_{i}.. ...

  2. bzoj3745: [Coci2015]Norma 分治,单调队列

    链接 bzoj 思路 首先\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}\sum\limits_{k=i}^{j}max(a_k)\)可以用单调队列求解.参见 ...

  3. [BZOJ3745][COCI2015]Norma[分治]

    题意 题目链接 分析 考虑分治,记当前分治区间为 \(l,r\) . 枚举左端点,然后发现右端点无非三种情况: 极大极小值都在左边; 有一个在左边; 极大极小值都在右边; 考虑递推 \(l\) 的同时 ...

  4. BZOJ 3745: [Coci2015]Norma(分治)

    题意 给定一个正整数序列 \(a_1, a_2, \cdots, a_n\) ,求 \[ \sum_{i=1}^{n} \sum_{j=i}^{n} (j - i + 1) \min(a_i,a_{i ...

  5. bzoj 3745 [Coci2015]Norma——序列分治

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3745 如果分治,就能在本层仅算过 mid 的区间了. 可以从中间到左边地遍历左边,给右边两个 ...

  6. bzoj 3745: [Coci2015]Norma【分治】

    参考:https://blog.csdn.net/lych_cys/article/details/51203960 真的不擅长这种-- 分治,对于一个(l,r),先递归求出(l,mid),(mid+ ...

  7. bzoj3745: [Coci2015]Norma

    Description Input 第1行,一个整数N: 第2~n+1行,每行一个整数表示序列a. Output 输出答案对10^9取模后的结果. 预处理每个位置的数作为最小/大值向左延伸的最大距离, ...

  8. 【BZOJ3745】Norma(CDQ分治)

    [BZOJ3745]Norma(CDQ分治) 题面 BZOJ 洛谷 题解 这种问题直接做不好做,显然需要一定的优化.考虑\(CDQ\)分治. 现在唯一需要考虑的就是跨越当前中间节点的所有区间如何计算答 ...

  9. 【CF526F】Pudding Monsters cdq分治

    [CF526F]Pudding Monsters 题意:给你一个排列$p_i$,问你有对少个区间的值域段是连续的. $n\le 3\times 10^5$ 题解:bzoj3745 Norma 的弱化版 ...

随机推荐

  1. 51nod 1006 最长公共子序列Lcs 【LCS/打印path】

    1006 最长公共子序列Lcs  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

  2. ABP开发框架前后端开发系列---(1)框架的总体介绍

    ABP是ASP.NET Boilerplate的简称,ABP是一个开源且文档友好的应用程序框架.ABP不仅仅是一个框架,它还提供了一个最徍实践的基于领域驱动设计(DDD)的体系结构模型.学习使用ABP ...

  3. iOS5可能会删除本地文件储存

    文/ Nick (iphoneincubator) 关于iOS 5的本地文件储存Marco(Instapaper 的开发者)写过一篇很好的帖子阐述过相关问题,有兴趣的同学可以先阅读下他的文章然后再看下 ...

  4. Android Actionbar 添加返回按钮

    setHomeButtonEnabled这个小于4.0版本的默认值为true的.但是在4.0及其以上是false,该方法的作用:决定左上角的图标是否可以点击.没有向左的小图标. true 图标可以点击 ...

  5. 在dedecms后台发表文章显示外部连接栏目

    问题描述:客户的网站,有个顶级栏目,下面包含了几个子栏目,这个顶级栏目不想发布什么内容,点击后进入他的某个子栏目就可以了,这时候把这个顶级栏目设置为“外部连接”就可以了 但是设置顶级栏目为外部连接后, ...

  6. DB2和MySQL常用SQL整理

    1.Truncate删除表中所有数据 truncate table USER immediate; 说明:Truncate是一个能够快速清空资料表内所有资料的SQL语法.并且能针对具有自动递增值的字段 ...

  7. eclipse 安装java web插件

    1.eclipse java web搭建以及tomcat配置: http://www.cnblogs.com/yangyxd/articles/5615965.html 注意选择Eclipse IDE ...

  8. MFC开发小技巧总结

    1.在类向导里面可以为对话框添加方法. 2.如要添加变量,直接右击添加变量即可. 3.若对某个控件添加方法或者称之为消息处理函数,直接右击添加事件处理程序即可.  

  9. poj 1328 Radar Installation 【贪心】【区间选点问题】

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 54798   Accepted: 12 ...

  10. html的table使用div创建

    午休时间写了一个使用div创建table的案例 1.样式 <style> .table { display: table; } .tableRow { display: table-row ...