传送门

首先可以直接把整个序列建成一个完全二叉树的结构,这个应该都看得出来

然后考虑树形dp,以大于为例

设$f[i][j]$表示$i$这个节点在子树中排名第$j$位时的总方案数(因为实际只与相对大小有关,与实际数值无关)

我们考虑如果从当前子树中弄出$k$个节点,其他子树中弄出$j-1$个节点,那么当前节点的大小排名就是$k+j$

然后考虑一下,如果我们不看这个子树,根节点排在第$j$个,方案数是$f[i][j]$,如果只看此子树,此子树的根就是根节点的儿子,它在此子树中的排名可能是$1,2,...k$,那么我们就需要记录一下前缀和

然后考虑合并排列

对于小于根节点的,选出$j-1$个非此子树,对于大于根节点的,选出$sum[x]-1$个非此子树里弄出来的,那么就是一个组合问题了

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int N=,mod=1e9+;
int n,tot;char s[N];
ll f[N][N],g[N][N],tmp[N],c[N][N];
int head[N],ver[N<<],Next[N<<],sum[N];
inline void add(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
}
void dfs(int x){
int l=x<<,r=l|;;
if(l<=n) add(x,l);
if(r<=n) add(x,r);
g[x][]=f[x][]=sum[x]=;
for(int i=head[x];i;i=Next[i]){
int v=ver[i];dfs(v);
memset(tmp,,sizeof(tmp));
for(int j=;j<=sum[x];++j)
for(int k=;k<=sum[v];++k){
if(s[v]=='>')
tmp[j+k]+=f[x][j]*g[v][k]%mod
*c[j+k-][j-]%mod*c[sum[x]+sum[v]-j-k][sum[x]-j]%mod;
else tmp[j+k]+=f[x][j]*(g[v][sum[v]]-g[v][k]+mod)%mod
*c[j+k-][j-]%mod*c[sum[x]+sum[v]-j-k][sum[x]-j]%mod;
}
sum[x]+=sum[v];
for(int j=;j<=sum[x];++j)
f[x][j]=tmp[j]%mod,g[x][j]=(g[x][j-]+f[x][j])%mod;
}
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%s",&n,s+);
c[][]=;
for(int i=;i<=n;++i){
c[i][]=;
for(int j=;j<=i;++j)
c[i][j]=(c[i-][j]+c[i-][j-])%mod;
}
dfs();printf("%lld\n",g[][sum[]]);
return ;
}

洛谷P3757 [CQOI2017]老C的键盘的更多相关文章

  1. [bzoj4824][洛谷P3757][Cqoi2017]老C的键盘

    Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 Q 也 ...

  2. 洛谷 P3757 [CQOI2017]老C的键盘

    题面 luogu 题解 其实就是一颗二叉树 我们假设左儿子小于根,右儿子大于根 考虑树形\(dp\) \(f[u][i]\)表示以\(u\)为根的子树,\(u\)为第\(i\)小 那么考虑子树合并 其 ...

  3. Luogu P3757 [CQOI2017]老C的键盘

    题目描述 老C的键盘 题解 显然对于每个数 x 都有唯一对应的 \(x/2\) , 然而对于每个数 x 却可以成为 \(x*2\) 和 \(x*2+1\) 的对应数 根据这一特性想到了啥??? 感谢l ...

  4. [bzoj4823][洛谷P3756][Cqoi2017]老C的方块

    Description 老 C 是个程序员. 作为一个懒惰的程序员,老 C 经常在电脑上玩方块游戏消磨时间.游戏被限定在一个由小方格排成的R行C列网格上 ,如果两个小方格有公共的边,就称它们是相邻的, ...

  5. 洛谷$P3756\ [CQOI2017]$老$C$的方块 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 看到不能出现给定的讨厌的图形,简单来说就,特殊边两侧的方格不能同时再连方格. 所以如果出现,就相当于是四种方案?就分别炸四个格子. 然后冷静分析一波之后发现 ...

  6. [CQOI2017]老C的键盘

    [CQOI2017]老C的键盘 题目描述 额,网上题解好像都是用的一大堆组合数,然而我懒得推公式. 设\(f[i][j]\)表示以\(i\)为根,且\(i\)的权值为\(j\)的方案数. 转移: \[ ...

  7. [BZOJ4824][Cqoi2017]老C的键盘 树形dp+组合数

    4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 218  Solved: 171[Submit][Statu ...

  8. [BZOJ4824][CQOI2017]老C的键盘(树形DP)

    4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 193  Solved: 149[Submit][Statu ...

  9. bzoj 4824: [Cqoi2017]老C的键盘

    Description 老 C 是个程序员.     作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 ...

随机推荐

  1. 序列化组件(get/put/delete接口设计),视图优化组件

    一 . 知识点回顾 1 . 混入类 , 多继承 class Animal(object): def eat(self): print("Eat") def walk(self): ...

  2. -es6的部分语法

    es6的语法 一 . let 和 var 的区别 : 1 . let 和 val 的区别 :  ES6新增了let命令 , 用来声明变量,它的用法类似于 var (ES5), 但是所声明的变量,只在l ...

  3. c# wpf ComboBox 动态下拉框 及 动态默认值设定

    1.下拉框声明 <ComboBox x:Name="DirComboBox" Width="150" Height="18" Marg ...

  4. Python多人聊天室

    一.目的 以实现小项目的方式,来巩固之前学过的Python基本语法以及相关的知识. 二.相关技术: 1.wxpython GUI编程 2.网络编程 3.多线程编程 4.数据库编程 5.简单的将数据导出 ...

  5. SpringBoot2.0之整合Dubbo

    Dubbo支持协议 Dubbo支持dubbo.rmi.hessian.http.webservice.thrift.redis等多种协议,但是Dubbo官网是推荐我们使用Dubbo协议的. Sprin ...

  6. Log4j2_学习_01_Log4j 2使用教程

    一.推荐使用的log4j2.xml <?xml version="1.0" encoding="UTF-8"?> <!-- 设置log4j2的 ...

  7. 开机时遇到grub rescue无法进入系统的解决方法

    装双系统(win10和elementary os),elementary os是ubuntu的一个分支.在win10中合并了一块空白磁盘分区,再开机的时候出问题了. 遇到filesystem unkn ...

  8. C++中的宏和const

    在C语言中使用const来定义一个变量,可以通过变量类型的指针形式来进行修改,而C++中增强了这种表现形式,使得即使通过类型变量指针也不能对变量进行修改. 在C++中const和宏是有区别的. con ...

  9. 机器学习: Logistic Regression--python

    今天介绍 logistic regression,虽然里面有 regression 这个词,但是这其实是一种分类的方法,这个分类方法输出的也是 0-1 之间的一个数,可以看成是一种概率输出,这个分类器 ...

  10. css 3d box 实现的一些注意事项

    Test1.html <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...