传送门

首先,进行如下处理

如果$L$是$K$的倍数,那么让它变成$\frac{L}{K}$,否则变成$\frac{L}{K}+1$

把$H$变成$\frac{H}{K}$

那么,现在的问题就变成了在$[L,H]$范围内选$n$个数并令他们的$gcd$为$1$的方案数

然后令$f[i]$表示选出的数最大公约数为$i$且所有数不全相同的方案数,那么设$x$为$[L,H]$之间$i$的倍数的个数,那么$f[i]=x^n-x$

然而因为这种情况求出来的只是有公约数为$i$的情况,所以还要容斥一波搞掉公约数为$2*i,3*i...$的情况,只要减一下就好了

然后如果$L$为$1$那么是可以选的所有数都是$1$的,那么答案$+1$

 //minamoto
#include<cstdio>
const int N=1e5+,mod=1e9+;
int n,K,L,H,f[N];
int ksm(int x,int y){
int res=;
while(y){
if(y&) res=1ll*res*x%mod;
x=1ll*x*x%mod,y>>=;
}
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d%d%d",&n,&K,&L,&H);
L=L%K?L/K+:L/K;H/=K;
if(L>H) return puts(""),;
for(int i=;i<=H-L;++i){
int l=L,r=H;
l=l%i?l/i+:l/i;r/=i;
if(l>r) continue;
f[i]=(ksm(r-l+,n)-(r-l+)+mod)%mod;
}
for(int i=H-L;i;--i)
for(int j=(i<<);j<=H-L;j+=i)
f[i]=(f[i]-f[j]+mod)%mod;
if(L==) (f[]+=)%=mod;
printf("%d\n",f[]);
return ;
}

洛谷P3172 [CQOI2015]选数(容斥)的更多相关文章

  1. [bzoj3930] [洛谷P3172] [CQOI2015] 选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  2. (noip模拟十七)【BZOJ3930】[CQOI2015]选数-容斥水法

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  3. P3172 [CQOI2015]选数(莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P3172 [题解] https://www.luogu.org/blog/user29936/solutio ...

  4. 【洛谷p1036】选数

    (一定要声明我太蒟了,这个题扣了一上午……) 算法标签: …… dfs真的不是我所擅长的qwq,这道题的思路其实很简单,就是先dfs搜索所有可能的和,然后判断是不是质数.说着好说,然鹅并不好写: 第一 ...

  5. 洛谷 1447 [NOI2010]能量采集——容斥/推式子

    题目:https://www.luogu.org/problemnew/show/P1447 1.容斥原理 求 f [ i ] 表示 gcd==i 的对数,先 f [ i ] = (n/i) * (m ...

  6. luogu P3172 [CQOI2015]选数

    传送门 颓了一小时柿子orz 首先题目要求的是\[\sum_{x_1=l}^{r}\sum_{x_2=l}^{r}...\sum_{x_n=l}^{r}[gcd(x_1,x_2...x_n)=k]\] ...

  7. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

  8. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  9. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

随机推荐

  1. ubuntu把文件移动到指定的文件夹

    有个文件a.txt在/etc下,想把它移动到/etc/fuck文件夹中 cd /etc/fuck sudo mv a.txt 要移动到的文件夹 没报错就成功了

  2. 关于SQL语句参数中为多个带‘,’的字符串

    案例分析:画面为多分数选项,根据画面选择的分数组合=@分数,以SELECT * FROM [table_name] WHERE sore IN (@分数) 其实这不算一个复杂的问题,可能由于着急下班, ...

  3. 算法(Algorithms)第4版 练习 1.3.8

    方法实现: //1.3.8 package com.qiusongde; import java.util.Iterator; import java.util.NoSuchElementExcept ...

  4. html5--1.14 特殊符号的使用

    html5--1.14 特殊符号的使用 学习要点: 实体的概念一个表格小实例 1.HTML 实体 在 HTML 中,某些字符是预留的. 在 HTML 中不能使用小于号(&lt)和大于号(&am ...

  5. (转)HLS协议,html5视频直播一站式扫盲

    本文来自于腾讯bugly开发者社区,原文地址:http://bugly.qq.com/bbs/forum.php?mod=viewthread&tid=1277 视频直播这么火,再不学就 ou ...

  6. 【面试题046】求1+2+...+n

    [面试题046]求1+2+...+n 题目:     求1+2+...+n,要求不能使用乘除法.for.while.if.else.switch.case等关键字及条件判断语句(A?B:C).   思 ...

  7. 记一次keepalived脑裂问题查找

    在自己环境做keepalived+Redis实验时,当重启了备用redies机器后,发现两台redies主机都拿到了VIP [root@redis2 ~]# ip addr list 1: lo: & ...

  8. The current .NET SDK does not support targeting .NET Core 2.2

    The current .NET SDK does not support targeting .NET Core 2.2 1. 奇怪的错误 最近遇到了一件奇怪的事, The current .NET ...

  9. Python之模块介绍

    模块介绍 模块,是用一些代码实现的某个功能的代码集合. 类似与函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用,提供了代码的重用性和代码间的耦合.对于一个复杂的功能,可能需要多个函 ...

  10. 湖南程序设计竞赛赛题总结 XTU 1237 Magic Triangle(计算几何)

    这个月月初我们一行三人去湖南参加了ccpc湖南程序设计比赛,虽然路途遥远,六月的湘潭天气燥热,不过在一起的努力之下,拿到了一块铜牌,也算没空手而归啦.不过通过比赛,还是发现我们的差距,希望这几个月自己 ...