洛谷P3172 [CQOI2015]选数(容斥)
首先,进行如下处理
如果$L$是$K$的倍数,那么让它变成$\frac{L}{K}$,否则变成$\frac{L}{K}+1$
把$H$变成$\frac{H}{K}$
那么,现在的问题就变成了在$[L,H]$范围内选$n$个数并令他们的$gcd$为$1$的方案数
然后令$f[i]$表示选出的数最大公约数为$i$且所有数不全相同的方案数,那么设$x$为$[L,H]$之间$i$的倍数的个数,那么$f[i]=x^n-x$
然而因为这种情况求出来的只是有公约数为$i$的情况,所以还要容斥一波搞掉公约数为$2*i,3*i...$的情况,只要减一下就好了
然后如果$L$为$1$那么是可以选的所有数都是$1$的,那么答案$+1$
//minamoto
#include<cstdio>
const int N=1e5+,mod=1e9+;
int n,K,L,H,f[N];
int ksm(int x,int y){
int res=;
while(y){
if(y&) res=1ll*res*x%mod;
x=1ll*x*x%mod,y>>=;
}
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d%d%d",&n,&K,&L,&H);
L=L%K?L/K+:L/K;H/=K;
if(L>H) return puts(""),;
for(int i=;i<=H-L;++i){
int l=L,r=H;
l=l%i?l/i+:l/i;r/=i;
if(l>r) continue;
f[i]=(ksm(r-l+,n)-(r-l+)+mod)%mod;
}
for(int i=H-L;i;--i)
for(int j=(i<<);j<=H-L;j+=i)
f[i]=(f[i]-f[j]+mod)%mod;
if(L==) (f[]+=)%=mod;
printf("%d\n",f[]);
return ;
}
洛谷P3172 [CQOI2015]选数(容斥)的更多相关文章
- [bzoj3930] [洛谷P3172] [CQOI2015] 选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- (noip模拟十七)【BZOJ3930】[CQOI2015]选数-容斥水法
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- P3172 [CQOI2015]选数(莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P3172 [题解] https://www.luogu.org/blog/user29936/solutio ...
- 【洛谷p1036】选数
(一定要声明我太蒟了,这个题扣了一上午……) 算法标签: …… dfs真的不是我所擅长的qwq,这道题的思路其实很简单,就是先dfs搜索所有可能的和,然后判断是不是质数.说着好说,然鹅并不好写: 第一 ...
- 洛谷 1447 [NOI2010]能量采集——容斥/推式子
题目:https://www.luogu.org/problemnew/show/P1447 1.容斥原理 求 f [ i ] 表示 gcd==i 的对数,先 f [ i ] = (n/i) * (m ...
- luogu P3172 [CQOI2015]选数
传送门 颓了一小时柿子orz 首先题目要求的是\[\sum_{x_1=l}^{r}\sum_{x_2=l}^{r}...\sum_{x_n=l}^{r}[gcd(x_1,x_2...x_n)=k]\] ...
- 洛谷 [CQOI2015]选数 解题报告
[CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...
- bzoj3930[CQOI2015]选数 容斥原理
3930: [CQOI2015]选数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1383 Solved: 669[Submit][Status] ...
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
随机推荐
- luoguP3066 [USACO12DEC]逃跑的BarnRunning
luoguP3066 [USACO12DEC]逃跑的BarnRunning 题目大意 给定一棵n个节点的树和参数L,查询每个节点子树中到达该节点距离<=L的数量(包括该节点) 偏模板的主席树 P ...
- vue 动态传值笔记
:prop="'answers.a' + item.split('.')[1]+'.total'" {{scope.row.answers['a'+item.split('.')[ ...
- BZOJ 3083 遥远的国度 树链剖分+线段树
有换根的树链剖分的裸题. 在换根的时候注意讨论. 注意数据范围要开unsigned int或longlong #include<iostream> #include<cstdio&g ...
- 在ubuntu怎样修改默认的编码格式
ubuntu修改系统默认编码的方法是: 1. 参考 /usr/share/i18n/SUPPORTED 编辑/var/lib/locales/supported.d/* gedit /var/lib/ ...
- densenet tensorflow 中文汉字手写识别
densenet 中文汉字手写识别,代码如下: import tensorflow as tf import os import random import math import tensorflo ...
- nodejs && apidoc
1. 安装nodejs http://www.nodejs.org 源码编译 configure —prefix=/usr/local/nodejs make ...
- 重新拾取:ASP.NET Core WebApi 使用Swagger支持授权认证
园子里已经有很多.NET Core 集成Swagger的文章,但对于使用授权的介绍蛮少的. public static class SwaggerServiceExtensions { public ...
- hdu 6121 Build a tree
/** * 题意:一棵 n 个点的完全 k 叉树,结点标号从 0 到 n - 1,求以每一棵子树的大小的异或和. * 解法:k叉树,当k=1时,特判,用xorn函数,具体解释:http://blog. ...
- 1034 Head of a Gang (30)(30 分)
One way that the police finds the head of a gang is to check people's phone calls. If there is a pho ...
- ACM学习历程—BestCoder 2015百度之星资格赛1002 列变位法解密(vector容器)
Problem Description 列变位法是古典密码算法中变位加密的一种方法,具体过程如下 将明文字符分割成个数固定的分组(如5个一组,5即为密钥),按一组一行的次序整齐排列,最后不足一组不放置 ...