HDU 3501【欧拉函数拓展】
欧拉函数
欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) 。
通式:φ(x)=x*(1-1/p1)(1-1/p2)(1-1/p3)*(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数就是1本身)。
对于质数p,φ(p) = p - 1。注意φ(1)=1.
欧拉定理:对于互质的正整数a和n,有aφ(n) ≡ 1 mod n。
欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。
若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。
特殊性质:当n为奇数时,φ(2n)=φ(n)
欧拉函数还有这样的性质:
设a为N的质因数,
若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N / a) * a;
若(N % a == 0 && (N / a) % a != 0) 则有:E(N) = E(N / a) * (a - 1)。
欧拉公式的延伸:一个数的所有质因子之和是euler(n)*n/2。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod=1e9+7;
LL eluer(LL n)
{
LL res=n,a=n;
for(LL i=2;i*i<=a;i++)
{
if(a%i==0)
{
res=res/i*(i-1);
while(a%i==0)
a/=i;
}
}
if(a>1) res=res/a*(a-1);
return res;
}
int main()
{
LL n,ans;
while(~scanf("%lld",&n)&&n)
{
ans=n*(n+1)/2-n;
ans=(ans-eluer(n)*n/2)%mod;
printf("%lld\n",ans);
}
return 0;
}
HDU 3501【欧拉函数拓展】的更多相关文章
- hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion
http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...
- hdu 2654(欧拉函数)
Become A Hero Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- hdu 2824(欧拉函数)
The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 1395(欧拉函数)
2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- hdu 3307(欧拉函数+好题)
Description has only two Sentences Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/327 ...
- 找新朋友 HDU - 1286 欧拉函数模板题
题意: 求出来区间[1,n]内与n互质的数的数量 题解: 典型的欧拉函数应用,具体见这里:Relatives POJ - 2407 欧拉函数 代码: 1 #include<stdio.h> ...
- hdu 2824 欧拉函数 O(nlogn) 和O(n)
裸题 O(nlogn): #include <cstdio> #include <iostream> #include <algorithm> using name ...
- hdu 4983 欧拉函数
http://acm.hdu.edu.cn/showproblem.php?pid=4983 求有多少对元组满足题目中的公式. 对于K=1的情况,等价于gcd(A, N) * gcd(B, N) = ...
- hdu 4002 欧拉函数 2011大连赛区网络赛B
题意:求1-n内最大的x/phi(x) 通式:φ(x)=x*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是 ...
随机推荐
- 搭建React Native开发环境
搭建React Native开发环境 本文档是Mac下搭建的环境,针对的目标平台不同,以及开发 iOS 和 Android 的不同,环境搭建也有差异. Github地址:https://github. ...
- js如何获取手机的屏幕尺寸
var width = $(document.body).outerWidth();//手机的屏幕宽 var height = $(window).innerHeight(); //手机的屏幕高
- 【BZOJ1043】[HAOI2008]下落的圆盘 几何
[BZOJ1043][HAOI2008]下落的圆盘 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. ...
- EasyDarwin开源流媒体服务器支持basic基本认证和digest摘要认证解析
本文转自EasyDarwin开源团队成员ss的博客:http://blog.csdn.net/ss00_2012/article/details/52262621 RTSP认证作为RTSP标准协议的一 ...
- ElasticSearch(二)核心概念
elasticsearch核心概念 (1)Near Realtime(NRT):近实时,两个意思,从写入数据到数据可以被搜索到有一个小延迟(大概1秒):基于es执行搜索和分析可以达到秒级 (2)Clu ...
- java读取properties文件中参数值
在类文件中加入代码: //config.properties.sysInfo //sysInfo.properties在文件夹的路径为/src/config/properties/sysInfo.pr ...
- 5 Maven生命周期和插件
命令行的输入往往就对应了声明周期,Maven的生命周期是抽象的,其实际行为都是由插件来完成.生命周期和插件两者协同工作,密不可分. 一.何为声明周期 Maven的生命周期就是为了对多有 ...
- javascript 正则表达式 进阶教程
学习之前先来说一说一些概念 子项 1.正则的一个分组为一个子项,子项的匹配结果可以在这个子项之后被使用 2.子项是有顺序的,以(出现的位置顺序从左到右,第一个'()'--分组 包含的为第一子项,第二个 ...
- zabbix 中 宏 的介绍
宏的作用是便于在模板.items.trigger中的引用.宏的名称为 {$名称},宏的字符范围为 A~Z.0~9._ . 例如: 在key中的宏: net.tcp.service[ssh,{$SSH_ ...
- linux应用之gcc编译器的安装及使用
gcc是linux系统下功能十分强大的编译器. 本人使用的是CentOS 6.6 64位系统,由于在安装系统的时候并没有勾选安装gcc编译器,因此需要自行安装gcc编译器. 使用yum安装gcc 对于 ...