欧拉函数

欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) 。

通式:φ(x)=x*(1-1/p1)(1-1/p2)(1-1/p3)*(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数就是1本身)。

对于质数p,φ(p) = p - 1。注意φ(1)=1.

欧拉定理:对于互质的正整数a和n,有aφ(n) ≡ 1 mod n。

欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。

若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。

特殊性质:当n为奇数时,φ(2n)=φ(n)

欧拉函数还有这样的性质:

设a为N的质因数,

若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N / a) * a;

若(N % a == 0 && (N / a) % a != 0) 则有:E(N) = E(N / a) * (a - 1)。

欧拉公式的延伸:一个数的所有质因子之和是euler(n)*n/2。

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod=1e9+7; LL eluer(LL n)
{
LL res=n,a=n;
for(LL i=2;i*i<=a;i++)
{
if(a%i==0)
{
res=res/i*(i-1);
while(a%i==0)
a/=i;
}
}
if(a>1) res=res/a*(a-1);
return res;
} int main()
{
LL n,ans;
while(~scanf("%lld",&n)&&n)
{
ans=n*(n+1)/2-n;
ans=(ans-eluer(n)*n/2)%mod;
printf("%lld\n",ans);
}
return 0;
}

HDU 3501【欧拉函数拓展】的更多相关文章

  1. hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion

    http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...

  2. hdu 2654(欧拉函数)

    Become A Hero Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  3. hdu 2824(欧拉函数)

    The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. hdu 1395(欧拉函数)

    2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  5. hdu 3307(欧拉函数+好题)

    Description has only two Sentences Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/327 ...

  6. 找新朋友 HDU - 1286 欧拉函数模板题

    题意: 求出来区间[1,n]内与n互质的数的数量 题解: 典型的欧拉函数应用,具体见这里:Relatives POJ - 2407 欧拉函数 代码: 1 #include<stdio.h> ...

  7. hdu 2824 欧拉函数 O(nlogn) 和O(n)

    裸题 O(nlogn): #include <cstdio> #include <iostream> #include <algorithm> using name ...

  8. hdu 4983 欧拉函数

    http://acm.hdu.edu.cn/showproblem.php?pid=4983 求有多少对元组满足题目中的公式. 对于K=1的情况,等价于gcd(A, N) * gcd(B, N) = ...

  9. hdu 4002 欧拉函数 2011大连赛区网络赛B

    题意:求1-n内最大的x/phi(x) 通式:φ(x)=x*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是 ...

随机推荐

  1. elk 日志分析系统Logstash+ElasticSearch+Kibana4

    elk 日志分析系统 Logstash+ElasticSearch+Kibana4 logstash 管理日志和事件的工具 ElasticSearch 搜索 Kibana4 功能强大的数据显示clie ...

  2. iOS开发之加载、滑动翻阅大量图片优化解决方案

    本文转载至 http://mobile.51cto.com/iphone-413267.htm 今天分享一下私人相册中,读取加载.滑动翻阅大量图片解决方案,我想强调的是,编程思想无关乎平台限制.我要详 ...

  3. mybatis学习总结(二)——配置

    在mybatis中要构建sqlSessionFactory对象,让它来产生SqlSession,而在mybatis-spring中,SqlSession的产生是通过SqlSessionTemplate ...

  4. 九度OJ 1122:吃糖果 (递归)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1522 解决:1200 题目描述: 名名的妈妈从外地出差回来,带了一盒好吃又精美的巧克力给名名(盒内共有 N 块巧克力,20 > N ...

  5. Windows消息、绘图与多线程

    有一个项目,一旦点下按钮后,用死循环不停的读数据,读出后立刻用可视化的方法显示.如果不采用多线程的方法,程序运行都正确,但无法关闭窗口,不清楚是窗口无法通过关闭按钮来接受Windows消息,还是接受了 ...

  6. ABAP- INCLUDE Zxxx IF FOUND.

    大顾代码: INCLUDE zinc_ca_0002 IF FOUND. - 这肯定是大顾问写出来的 - 一般都不会加东西啊 -加了 IF FOUND 不知道啥意思.  古道无仙(173120830) ...

  7. Impala 安装笔记1一Cloudera CDH4.3.0安装

    Impala是Cloudera在受到Google的Dremel启发下开发的实时交互SQL大数据查询工具,Impala没有再使用缓慢的Hive+MapReduce批处理,而是通过使用与商用并行关系数据库 ...

  8. [usaco2008feb_gold]路面修整

      FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1 ...

  9. hdu1078 FatMouse and Cheese —— 记忆化搜索

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1078 代码1: #include<stdio.h>//hdu 1078 记忆化搜索 #in ...

  10. ping请求超时的解决方法

    我们有时需要进行远程或者共享对方数据库的时候,会ping一下对方电脑,时候能够ping通,时候能够进行数据的传输.有时会出现ping请求超时,那么遇到这个问题该怎么解决? 我们首要解决的是看他自己是否 ...