LightOJ1236 —— 唯一分解定理 + 最小公倍数
题目链接:https://vjudge.net/problem/LightOJ-1236
Time Limit: 2 second(s) | Memory Limit: 32 MB |
Find the result of the following code:
long long pairsFormLCM( int n ) {
long long res = 0;
for( int i = 1; i <= n; i++ )
for( int j = i; j <= n; j++ )
if( lcm(i, j) == n ) res++; // lcm means least common multiple
return res;
}
A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs (i, j) for which lcm(i, j) = n and (i ≤ j).
Input
Input starts with an integer T (≤ 200), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).
Output
For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.
Sample Input |
Output for Sample Input |
15 2 3 4 6 8 10 12 15 18 20 21 24 25 27 29 |
Case 1: 2 Case 2: 2 Case 3: 3 Case 4: 5 Case 5: 4 Case 6: 5 Case 7: 8 Case 8: 5 Case 9: 8 Case 10: 8 Case 11: 5 Case 12: 11 Case 13: 3 Case 14: 4 Case 15: 2 |
题意:
求1到n(1e14)之内,有多少对数(i,j),其中i<=j,使得LCM(i,j)= n,LCM为最小公倍数。
题解:
1.设pi为第i个质数。设两个数A、B,他们可表示为:A = p1^a1 * p2^a2…… ,B = p1^b1 * p2^b2……。
那么他们的最小公倍数为:LCM(A, B) = p1^max(a1,b1) * p2^max(a2, b2)……。
2.对n进行质因数分解,得到: n = p1^c1 * p2^c2……。当 LCM(A, B) = n时, ci = max(ai, bi),即要么 ci = ai,要么ci = bi。
3 当ci = ai时, bi的可选择范围为[0,ci]共ci+1种;同理当ci = bi时,ai也有ci+1种选择。但是 (ai=ci,bi=ci)被重复计算了一次,所以对于素数pi,总共有 2*ci+1种选择。所以,当不考虑A、B的大小时,总共有 ∏ 2*ci+1对(A,B),使得 LCM(A, B) = n。
4.再考虑回A、B的大小限制,即A<=B,可知除了A = B = n时,其他的组合都出现了两次,即(A,B)和(B,A)都存在,而要门只需要A<=B的那一个。总的来说,最终有 ((∏ 2*ci+1)+1)/2对 (A,B)满足条件。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e7+; bool notprime[MAXN];
int prime[MAXN/];
void getPrime()
{
memset(notprime, false, sizeof(notprime));
notprime[] = notprime[] = true;
prime[] = ;
for (int i = ; i<MAXN; i++)
{
if (!notprime[i])prime[++prime[]] = i;
for (int j = ; j<=prime[]&& prime[j]<MAXN/i; j++)
{
notprime[prime[j]*i] = true;
if (i%prime[j] == ) break;
}
}
} int fatCnt;
LL factor[][];
int getFactors(LL n)
{
LL tmp = n;
fatCnt = ;
for(int i = ; prime[i]<=tmp/prime[i]; i++)
{
if(tmp%prime[i]==)
{
factor[++fatCnt][] = prime[i];
factor[fatCnt][] = ;
while(tmp%prime[i]==) tmp /= prime[i], factor[fatCnt][]++;
}
}
if(tmp>) factor[++fatCnt][] = tmp, factor[fatCnt][] = ;
} int main()
{
getPrime();
int T, kase = ;
scanf("%d", &T);
while(T--)
{
LL n;
scanf("%lld", &n);
getFactors(n);
LL sum = ;
for(int i = ; i<=fatCnt; i++)
sum *= *factor[i][]+; sum = (sum+)/;
printf("Case %d: %lld\n", ++kase, sum);
}
}
LightOJ1236 —— 唯一分解定理 + 最小公倍数的更多相关文章
- Uva 10791 最小公倍数的最小和 唯一分解定理
题目链接:https://vjudge.net/contest/156903#problem/C 题意:给一个数 n ,求至少 2个正整数,使得他们的最小公倍数为 n ,而且这些数之和最小. 分析: ...
- LightOJ-1236 Pairs Forming LCM 唯一分解定理
题目链接:https://cn.vjudge.net/problem/LightOJ-1236 题意 给一整数n,求有多少对a和b(a<=b),使lcm(a, b)=n 注意数据范围n<= ...
- NOIP2009Hankson 的趣味题[唯一分解定理|暴力]
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...
- UVa 10791 Minimum Sum LCM【唯一分解定理】
题意:给出n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小 看的紫书--- 用唯一分解定理,n=(a1)^p1*(a2)^p2---*(ak)^pk,当每一个(ak)^pk作为一个单 ...
- 唯一分解定理(以Minimun Sum LCM UVa 10791为例)
唯一分解定理是指任何正整数都可以分解为一些素数的幂之积,即任意正整数n=a1^p1*a2^p2*...*ai^pi:其中ai为任意素数,pi为任意整数. 题意是输入整数n,求至少2个整数,使得它们的最 ...
- hdu4497-GCD and LCM-(欧拉筛+唯一分解定理+组合数)
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- Uva10791 唯一分解定理模板
唯一分解定理: Uva10791 题意: 输入整数n,要求至少两个正整数,使得他们的最小公倍数为n,且这些整数的和最小 解法: 首先假设我们知道了一系列数字a1,a2,a3……an,他们的LCM是n, ...
- UVA10791-Minimum Sum LCM(唯一分解定理基本应用)
原题:https://vjudge.net/problem/UVA-10791 基本思路:1.借助唯一分解定理分解数据.2.求和输出 知识点:1.筛法得素数 2.唯一分解定理模板代码 3.数论分析-唯 ...
- UVA - 10375 Choose and divide[唯一分解定理]
UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS Memory Limit: 65536K Total Subm ...
随机推荐
- Software Engineering | Strategy pattern
聚合关系.
- GRDB使用SQLite的WAL模式
GRDB使用SQLite的WAL模式 WAL全称是Write Ahead Logging,它是SQLite中实现原子事务的一种机制.该模式是从SQLite 3.7.0版本引入的.再此之前,SQLi ...
- JD路径配置及myeclipse主题和提示设置
1. JDKAN安装及环境变量配置 安装jdk,注意记住安装路径(F:\Java\jdk1.8.0_121 )(个人爱好) 系统变量→新建 JAVA_HOME 变量 . 变量值填写jdk的安装目录(F ...
- Akka简介与Actor模型
Akka是一个构建在JVM上,基于Actor模型的的并发框架,为构建伸缩性强,有弹性的响应式并发应用提高更好的平台.本文主要是个人对Akka的学习和应用中的一些理解. Actor模型 Akka的核心就 ...
- Spring配置项之<aop:aspectj-autoproxy />
通过配置织入@Aspectj切面 虽然可以通过编程的方式织入切面,但是一般情况下,我们还是使用spring的配置自动完成创建代理织入切面的工作. 通过aop命名空间的<aop:aspectj-a ...
- 【spring data jpa】使用spring data jpa时,关于service层一个方法中进行【删除】和【插入】两种操作在同一个事务内处理
场景: 现在有这么一个情况,就是在service中提供的一个方法是先将符合条件的数据全部删除,然后再将新的条件全部插入数据库中 这个场景需要保证service中执行两步 1.删除 2.插入 这两步自然 ...
- javascript 怎么操纵OGNL标签
吧ONGL标签放到html标签中,来操作html的标签就能够了 样例代码: html <div id="categoryid" style="display:non ...
- Android开发——进程间通信之AIDL(二)
0. 前言 不论是Android还是其它操作系统.都会有自己的IPC机制.所谓IPC(Inter-Process Communication)即进程间通信.首先线程和进程是非常不同的概念,线程是CP ...
- 禁用Clusterware在系统启动后自己主动启动
以下是禁用及启用Clusterware随系统启动而自己主动启动的方法 10g下我们用例如以下方法: 禁用Clusterware随系统启动而自己主动启动 /etc/init.d/init.crs dis ...
- Content Provider 详解
几个概念:Cursor. Content provider . Uri .contentresolver 1. Cursor : 个人理解为数据库中的一行数据,它是每行数据的集合.它是一个类.通过它 ...