True(False) Positives (Negatives), 召回率和精度定义
True Positive (真正, TP)被模型预测为正的正样本;
True Negative(真负 , TN)被模型预测为负的负样本 ;
False Positive (假正, FP)被模型预测为正的负样本;
False Negative(假负 , FN)被模型预测为负的正样本;
True Positive Rate(真正率 , TPR)或灵敏度(sensitivity)
TPR = TP /(TP + FN)
正样本预测结果数 / 正样本实际数
True Negative Rate(真负率 , TNR)或特指度(specificity)
TNR = TN /(TN + FP)
负样本预测结果数 / 负样本实际数
False Positive Rate (假正率, FPR)
FPR = FP /(FP + TN)
被预测为正的负样本结果数 /负样本实际数
False Negative Rate(假负率 , FNR)
FNR = FN /(TP + FN)
被预测为负的正样本结果数 / 正样本实际数
召回率和精度:
- 系统检索到的相关文档(A)
- 系统检索到的不相关文档(B)
- 相关但是系统没有检索到的文档(C)
- 不相关但是被系统检索到的文档(D)
直观的说,一个好的检索系统检索到的相关文档越多越好,不相关文档越少越好.
召回率和精度是衡量信息检索系统性能最重要的参数.
召回率R:用检索到相关文档数作为分子,所有相关文档总数作为分母,即 R=A/(A+C)
精度P: 用检索到相关文档数作为分子,所有检索到的文档总数作为分母.即 P=A/(A+B).
|
检索到 |
A |
B |
|
未检索到 |
C |
D |
相关 不相关
True(False) Positives (Negatives), 召回率和精度定义的更多相关文章
- 查全率(召回率)、精度(准确率)和F值
文献中的recall rate(查全率或召回率) and precision(精度)是很重要的概念.可惜很多中文网站讲的我都稀里糊涂,只好用google查了个英文的,草翻如下:召回率和精度定义: 从一 ...
- 精确率与召回率,RoC曲线与PR曲线
在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口 ...
- False Positives和False Negative等含义
True Positive (真正, TP)被模型预测为正的正样本: True Negative(真负 , TN)被模型预测为负的负样本 : False Positive (假正, FP)被模型预测为 ...
- 斯坦福大学公开课机器学习:machine learning system design | error metrics for skewed classes(偏斜类问题的定义以及针对偏斜类问题的评估度量值:查准率(precision)和召回率(recall))
上篇文章提到了误差分析以及设定误差度量值的重要性.那就是设定某个实数来评估学习算法并衡量它的表现.有了算法的评估和误差度量值,有一件重要的事情要注意,就是使用一个合适的误差度量值,有时会对学习算法造成 ...
- 正确率、召回率和 F 值
原文:http://peghoty.blog.163.com/blog/static/49346409201302595935709/ 正确率.召回率和 F 值是在鱼龙混杂的环境中,选出目标的重要评价 ...
- Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);true positives;false positives;false negatives.
Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);在信息检索(如搜索引擎).自然语言处理和检测分类中经常会使用这些参数. Precision:被检测出来的信息 ...
- Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);true positives;false positives;false negatives..
转自:http://blog.csdn.net/t710smgtwoshima/article/details/8215037 Recall(召回率);Precision(准确率);F1-Meat ...
- Andrew Ng机器学习课程笔记--week6(精度&召回率)
Advice for applying machine learning 本周主要学习如何提升算法效率,以及如何判断学习算法在什么时候表现的很糟糕和如何debug我们的学习算法.为了让学习算法表现更好 ...
- 召回率(Recall),精确率(Precision),平均正确率
https://blog.csdn.net/yanhx1204/article/details/81017134 摘要 在训练YOLO v2的过程中,系统会显示出一些评价训练效果的值,如Recall, ...
随机推荐
- Akka简介与Actor模型
Akka是一个构建在JVM上,基于Actor模型的的并发框架,为构建伸缩性强,有弹性的响应式并发应用提高更好的平台.本文主要是个人对Akka的学习和应用中的一些理解. Actor模型 Akka的核心就 ...
- Flex 布局教程学习
转载自:阮一峰的网络日志(http://www.ruanyifeng.com/blog/2015/07/flex-grammar.html) 网页布局(layout)是 CSS 的一个重点应用. 布局 ...
- Deep learning with PyTorch: A 60 minute blitz _note(1) Tensors
Tensors 1. construst matrix 2. addition 3. slice from __future__ import print_function import torch ...
- ubuntu navicat for mysql破解
ubuntu navicat for mysql破解 ubuntu navicat for mysql只能试用14天. 破解方法:rm -rf /home/cxg/.navicat64/
- ES6新语法学习
参考: 1.http://es6.ruanyifeng.com/#docs/let#let-命令 2.https://reactjs.org/tutorial/tutorial.html 3.http ...
- window.open 打开子窗体,关闭全部的子窗体
需求:通过window.open方法打开了子窗体,当关闭主窗体时.子窗体应当也关闭. 实现思路: 1.打开子窗体函数window.open(url,winName)的第二个參数winName能够唯一标 ...
- C 标准库 - <errno.h>
C 标准库 - <errno.h> 简介 C 标准库的 errno.h 头文件定义了整数变量 errno,它是通过系统调用设置的,在错误事件中的某些库函数表明了什么发生了错误.该宏扩展为类 ...
- 一个IP绑定多个域名
http://www.zhihu.com/question/29390934/answer/44252886
- xcode 5.0 以上去掉icon高亮方法&iOS5白图标问题
之前的建议方法是把在xxx.info.plist文件里把 icon already includes gloss and bevel effects 设置YES 在Xcode5下,重复实现不成功,今天 ...
- shell(3):文本处理、基本语法和脚本编写
一.awk.变量.运算符.if多分支 awk:shell编辑器的一种文本处理工具/命令,同grep.sed一样均可解释正则.具体运用下面awk文本处理有详细说明. 变量:分为系统变量和临时变量.变量一 ...