Poj1142 Smith Numbers

Smith Numbers

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 13854 Accepted: 4716

Description

While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the digits of the prime factors of that number. Got it? Smith’s telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:

4937775= 3*5*5*65837

The sum of all digits of the telephone number is 4+9+3+7+7+7+5= 42,and the sum of the digits of its prime factors is equally 3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this kind of numbers after his brother-in-law: Smith numbers.

As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number, so he excluded them from the definition.

Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036. However,Wilansky was not able to find a Smith number that was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers that are larger than 4937775!

Input

The input file consists of a sequence of positive integers, one integer per line. Each integer will have at most 8 digits. The input is terminated by a line containing the number 0.

Output

For every number n > 0 in the input, you are to compute the smallest Smith number which is larger than n,and print it on a line by itself. You can assume that such a number exists.

Sample Input

4937774

0

Sample Output

4937775

Source

Mid-Central European Regional Contest 2000

题意 大于n满足你的各个位数之和等于质因子各位数之和。

题解 暴力过。

#include<cstdio>
int fun(long long a)
{
int sum=0;
while(a>0)
{
sum+=a%10;
a/=10;
}
return sum;
} bool prime(long long a)
{
int flag=1;
if (a==1) return false;
if(a==2) return true;
for(int i=2;i*i<a+1;i++)
if(a%i==0)
{
flag=0;
break;
}
if(flag)
return true;
else
return false;
} int cnt(long long a)
{
if(prime(a))
return fun(a);
else
{
for(int i=2;i*i<a+1;i++)
{
if(a%i==0)
return cnt(i)+cnt(a/i);
}
}
} int main()
{
long long a;
while(scanf("%lld",&a)!=EOF&&a)
{
while(a++)
{
int sum=fun(a); if(!prime(a)&&fun(a)==cnt(a))
break; }
printf("%lld\n",a); }
return 0;
}

这时间倒也不是很多,79ms

poj1142 Smith Numbers的更多相关文章

  1. POJ1142 Smith Numbers 暴力+分解质因子

    题意:题目定义了一个史密斯数,这个数的定义是:一个合数的各个位置上加起来的和等于它的素因数所有位置上的数字加起来的和.比如: 4937775=3∗5∗5∗658374+9+3+7+7+7+5=3+5+ ...

  2. poj1142.Smith Number(数学推导)

    Smith Number Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 825  Solved: 366 Description While skimm ...

  3. POJ 1142 Smith Numbers(史密斯数)

    Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...

  4. Smith Numbers - PC110706

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...

  5. poj 1142 Smith Numbers

    Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...

  6. Smith Numbers POJ - 1142 (暴力+分治)

    题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...

  7. POJ 1142:Smith Numbers(分解质因数)

                                   Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submiss ...

  8. UVA 10042 Smith Numbers(数论)

    Smith Numbers Background While skimming his phone directory in 1982, Albert Wilansky, a mathematicia ...

  9. A - Smith Numbers POJ

    While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,no ...

随机推荐

  1. spring技术小结

    1.DI和IOC 依赖注入(Dependency Injection)还是控制反转(Inversion of Conctrol) bean通过依赖注入,注册到spring容器里面.spring容器通过 ...

  2. 分享一个WPF下日历控件(Calendar)的样式

    WPF日历控件的一个样式 WPF自带的日历控件样式可能会比较丑,要修改其样式看起来挺复杂的,实际上很简单,用Blend打开,修改三个模板,基本就能改变全部面貌,也很容易 先上图 样式如下: <S ...

  3. Android入门:Service入门介绍

    一.Service介绍 Service类似于Windows中的服务,没有界面,只是在后台运行:而服务不能自己运行,而是需要调用Context.startService(Intent intent);或 ...

  4. https验证新发现-老知识

    HttpsURLConnection.setDefaultHostnameVerifier(hostnameVerifier); 可以设置https全局的域名校验规则 HttpsURLConnecti ...

  5. Cocos2d-x v3.1 GUI系统--环境构建(七)

    Cocos2d-x v3.1 GUI系统--环境构建(七) 在使用Cocos2d-x的GUI系统时,由于生成的工程默认是没有将GUI系统所需的库导入到项目的,所以我们必须把库导入到工程中并对工程做一些 ...

  6. JavaScript getMonth() 方法

    应该特别注意的是Js中getMonth()这个方法的返回值: 定义和用法: getMonth() 方法可返回表示月份的数字. 返回值: dateObject 的月份字段,使用本地时间.返回值是 0(一 ...

  7. expect脚本中,变量的写法

    一.expect脚本中,变量的不同写法 shell脚本中定义时间变量的写法:time=`date "+%Y%m%d"` ==>>直接照搬到expect中,设置的变量是不 ...

  8. 标准对象 -------JavaScript

    本文摘要:http://www.liaoxuefeng.com/ 在JavaScript的世界里,一切都是对象. 但是某些对象还是和其他对象不太一样.为了区分对象的类型,我们用typeof操作符获取对 ...

  9. Bootstrap历练实例:响应式标签页

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  10. 操作系统(6)_虚拟存储管理_李善平ppt

    image含各种段. 有些不需要的页可能永远不需要装入内存,可能只有百分之70-80是异常情况采用的,这种代码就可以放入硬盘. 抖动实际就是进程数太多导致内存不够用造成的. 页面换入换出在内存和磁盘之 ...