Poj1142 Smith Numbers

Smith Numbers

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 13854 Accepted: 4716

Description

While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the digits of the prime factors of that number. Got it? Smith’s telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:

4937775= 3*5*5*65837

The sum of all digits of the telephone number is 4+9+3+7+7+7+5= 42,and the sum of the digits of its prime factors is equally 3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this kind of numbers after his brother-in-law: Smith numbers.

As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number, so he excluded them from the definition.

Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036. However,Wilansky was not able to find a Smith number that was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers that are larger than 4937775!

Input

The input file consists of a sequence of positive integers, one integer per line. Each integer will have at most 8 digits. The input is terminated by a line containing the number 0.

Output

For every number n > 0 in the input, you are to compute the smallest Smith number which is larger than n,and print it on a line by itself. You can assume that such a number exists.

Sample Input

4937774

0

Sample Output

4937775

Source

Mid-Central European Regional Contest 2000

题意 大于n满足你的各个位数之和等于质因子各位数之和。

题解 暴力过。

#include<cstdio>
int fun(long long a)
{
int sum=0;
while(a>0)
{
sum+=a%10;
a/=10;
}
return sum;
} bool prime(long long a)
{
int flag=1;
if (a==1) return false;
if(a==2) return true;
for(int i=2;i*i<a+1;i++)
if(a%i==0)
{
flag=0;
break;
}
if(flag)
return true;
else
return false;
} int cnt(long long a)
{
if(prime(a))
return fun(a);
else
{
for(int i=2;i*i<a+1;i++)
{
if(a%i==0)
return cnt(i)+cnt(a/i);
}
}
} int main()
{
long long a;
while(scanf("%lld",&a)!=EOF&&a)
{
while(a++)
{
int sum=fun(a); if(!prime(a)&&fun(a)==cnt(a))
break; }
printf("%lld\n",a); }
return 0;
}

这时间倒也不是很多,79ms

poj1142 Smith Numbers的更多相关文章

  1. POJ1142 Smith Numbers 暴力+分解质因子

    题意:题目定义了一个史密斯数,这个数的定义是:一个合数的各个位置上加起来的和等于它的素因数所有位置上的数字加起来的和.比如: 4937775=3∗5∗5∗658374+9+3+7+7+7+5=3+5+ ...

  2. poj1142.Smith Number(数学推导)

    Smith Number Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 825  Solved: 366 Description While skimm ...

  3. POJ 1142 Smith Numbers(史密斯数)

    Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...

  4. Smith Numbers - PC110706

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...

  5. poj 1142 Smith Numbers

    Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...

  6. Smith Numbers POJ - 1142 (暴力+分治)

    题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...

  7. POJ 1142:Smith Numbers(分解质因数)

                                   Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submiss ...

  8. UVA 10042 Smith Numbers(数论)

    Smith Numbers Background While skimming his phone directory in 1982, Albert Wilansky, a mathematicia ...

  9. A - Smith Numbers POJ

    While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,no ...

随机推荐

  1. 经典SQL语句集锦(收藏版)

    文章来源:http://www.cnblogs.com/herbert/archive/2010/07/02/1770062.html SQL分类: DDL—数据定义语言(CREATE,ALTER,D ...

  2. 解决WinSCP连接虚拟机

    其实虚拟机你也可以将它形象化,认为它就是一台电脑,只是这个电脑在你的内存中,所以,一般电脑所具有的的功能虚拟机一样拥有,它也可以当成一台独立的个体哦. 针对很多使用WinSCP连接不上虚拟机的问题,这 ...

  3. spring boot 监控与管理(actuator)

    Spring POMs 中提供了一个特殊的依赖模块,即spring-boot-starter-actuator,我们只需要在我们的POM中添加依赖即可 <!-- 监控 管理 --> < ...

  4. 从零开始的全栈工程师——js篇2.16

    js操作css样式 div.style.width=“200px” 在div标签内我们添加了一个style属性 并设定了width值 这种写法会给标签带来了大量的style属性 跟实际项目是不符的 我 ...

  5. Vue系列:关于侵权前言

    因为一开始学习 Vue 的时候,秉持的是"好记性不如烂笔头"的思想,所以这些知识点都是当时查阅然后选择性摘录下来的. 当时并没有很刻意去记录原文出处(现在我知错了..),所以..如 ...

  6. Css文件目录结构

    一般一个网站会有这么三个样式: global.css | reset.css(格式化样式) common.css(公共组件样式) layout.css(当前页面样式) global.css | res ...

  7. 零基础逆向工程30_Win32_04_资源文件_消息断点

    1 资源文件,创建对话框 详细步骤: 1.创建一个空的Win32应用程序 2.在VC6中新增资源 File -> New -> Resource Script 创建成功后会新增2个文件:x ...

  8. zabbix-3.4 触发器

    3 触发器 概述 触发器是"评估"由项目采集的数据并表示当前系统状况的逻辑表达式. 当监控项用于采集系统的数据时,始终遵循这些数据是非常不切合实际的,因为这些数据始终在等待一个令人 ...

  9. django ORM 简单示例简绍

    简单 models 操作 class Host(models.Model): nid = models.AutoField(primary_key=True) #Nid为主键 hostname = m ...

  10. Winform调整DEV控件高度