题意

题目链接

称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值

Sol

这辈子做不出的计数系列。

一眼小根堆没啥好说的。最关键的一点是:树的形态是可以递推出来的。

那么当前点$i$为根节点,大小为$siz[i]$,左/右儿子分别为$ls, rs$

那么$f[i] = C_{siz[i] - 1}^{siz[ls]} f[ls] \times f[rs]$

Lucas定理算组合数

#include<cstdio>
//#define int long long
using namespace std;
const int MAXN = 1e6 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, P, fac[MAXN] = {}, ifac[MAXN], siz[MAXN], f[MAXN];
int fastpow(int a, int p, int mod) {
int base = ;
while(p) {
if(p & ) base = (1ll * base % mod * a % mod) % mod;
a = (1ll * a % mod * a % mod) % mod; p >>= ;
}
return base % mod;
}
int C(int N, int M, int P) {
if(M > N) return ;
return 1ll * fac[N] % P * ifac[M] % P * ifac[N - M] % P;
}
int Lucas(int N, int M, int P) {
if(!N || !M) return ;
return Lucas(N / P, M / P, P) * C(N % P, M % P, P);
}
main() {
N = read(); P = read();
for(int i = ; i <= N; i++) fac[i] = 1ll * i * fac[i - ] % P;
ifac[N] = fastpow(fac[N], P - , P);
for(int i = N; i >= ; i--) ifac[i - ] = 1ll * i * ifac[i] % P;
for(int i = N; i >= ; i--) {
siz[i] = ;
int ls = (i << ), rs = (i << | );
if(rs <= N) siz[i] += siz[ls] + siz[rs], f[i] = 1ll * Lucas(siz[i] - , siz[ls], P) * f[ls] % P * f[rs] % P;
else if(ls <= N) siz[i] += siz[ls], f[i] = f[ls];
else f[i] = ;
}
printf("%d", f[]);
return ;
}
/*
999999 1000000007
*/

洛谷P2606 [ZJOI2010]排列计数(组合数 dp)的更多相关文章

  1. 洛谷P2606 [ZJOI2010]排列计数 组合数学+DP

    题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...

  2. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  3. 洛谷P2606 [ZJOI2010]排列计数(数位dp)

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  4. ●洛谷P2606 [ZJOI2010]排列计数

    题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...

  5. 洛谷P2606 [ZJOI2010]排列计数

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  6. 洛谷P2602 [ZJOI2010]数字计数(数位dp)

    数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...

  7. P2606 [ZJOI2010]排列计数

    P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...

  8. 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...

  9. 洛谷 P2602 [ZJOI2010]数字计数

    洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于 ...

随机推荐

  1. 获取CPU ID ,disk ID, MAC ID (windows ARM linux Mac)

    windows 命令行获取CPU ID,可以用ShellExecute wmic cpu get processorid ProcessorId BFEBFBFF000506E3 开源库: 查询CPU ...

  2. ng2中的ng-content用法

    用途:1.ng-content用于在组件中嵌入内容 2.ng-content可以在组件中嵌入模板代码,方便定制可复用的组件 select属性支持css选择器,如"#id",&quo ...

  3. JS加DOM理解

    1. ***变量 2. ***数据类型 一. ***变量:内存中存储*一个*数据的存储空间,再起一个名字 何时使用:程序中反复使用的数据,都要先保存在变量中,再参与运算 如何使用:声明   赋值    ...

  4. WPF PasswordBox鼠标进入时程序异常退出的解决办法

    最近在开发了一个程序中用到了PasswordBox控件,但是在程序给别人用的时候,鼠标一进入控件时程序就异常退出,查了下windows日志,错误显示如下: 应用程序: WpfPasswordTest2 ...

  5. Ubuntu下如何禁用IPv6

    Ubuntu下如何禁用IPv6 2013-10-16 11:32:02 分类: HADOOP      分布式下的hadoop/hbase运行总出问题,zookeeper连接总是出问题,怀疑可能是ip ...

  6. HDU - 3001 Travelling(三进制状压dp)

    Travelling After coding so many days,Mr Acmer wants to have a good rest.So travelling is the best ch ...

  7. Spring Security 表达式(Expressions) - hasRole示例

    1.概述 Spring Security使用强大的Spring Expression Language(SpEL)提供各种各样的表达式.大多数这些Security表达式是针对上下文对象(当前经过身份验 ...

  8. Lightoj1028【计算约数个数】

    思路: 最终就是求一个数的约数(除了1)对吧. 然后想要枚举sqrt(N)受阻,枚举素数数组受阻,加上prime[i]*prime[i]<=n就好了?那就好了吧. #include <bi ...

  9. 洛谷 P1875 佳佳的魔法药水

    P1875 佳佳的魔法药水 题目描述 发完了 k 张照片,佳佳却得到了一个坏消息:他的 MM 得病了!佳佳和大家一样焦急 万分!治好 MM 的病只有一种办法,那就是传说中的 0 号药水 --怎么样才能 ...

  10. Luogu P1637 三元上升子序列【权值线段树】By cellur925

    题目传送门 emmm..不开结构体的线段树真香! 首先我们知道"三元上升子序列"的个数就是对于序列中的每个数,**它左边比他小的数*它右边比他大的数**.但是如何快速求出这两个数? ...