洛谷P2606 [ZJOI2010]排列计数(组合数 dp)
题意
称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值
Sol
这辈子做不出的计数系列。
一眼小根堆没啥好说的。最关键的一点是:树的形态是可以递推出来的。
那么当前点$i$为根节点,大小为$siz[i]$,左/右儿子分别为$ls, rs$
那么$f[i] = C_{siz[i] - 1}^{siz[ls]} f[ls] \times f[rs]$
Lucas定理算组合数
#include<cstdio>
//#define int long long
using namespace std;
const int MAXN = 1e6 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, P, fac[MAXN] = {}, ifac[MAXN], siz[MAXN], f[MAXN];
int fastpow(int a, int p, int mod) {
int base = ;
while(p) {
if(p & ) base = (1ll * base % mod * a % mod) % mod;
a = (1ll * a % mod * a % mod) % mod; p >>= ;
}
return base % mod;
}
int C(int N, int M, int P) {
if(M > N) return ;
return 1ll * fac[N] % P * ifac[M] % P * ifac[N - M] % P;
}
int Lucas(int N, int M, int P) {
if(!N || !M) return ;
return Lucas(N / P, M / P, P) * C(N % P, M % P, P);
}
main() {
N = read(); P = read();
for(int i = ; i <= N; i++) fac[i] = 1ll * i * fac[i - ] % P;
ifac[N] = fastpow(fac[N], P - , P);
for(int i = N; i >= ; i--) ifac[i - ] = 1ll * i * ifac[i] % P;
for(int i = N; i >= ; i--) {
siz[i] = ;
int ls = (i << ), rs = (i << | );
if(rs <= N) siz[i] += siz[ls] + siz[rs], f[i] = 1ll * Lucas(siz[i] - , siz[ls], P) * f[ls] % P * f[rs] % P;
else if(ls <= N) siz[i] += siz[ls], f[i] = f[ls];
else f[i] = ;
}
printf("%d", f[]);
return ;
}
/*
999999 1000000007
*/
洛谷P2606 [ZJOI2010]排列计数(组合数 dp)的更多相关文章
- 洛谷P2606 [ZJOI2010]排列计数 组合数学+DP
题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- 洛谷P2606 [ZJOI2010]排列计数(数位dp)
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- ●洛谷P2606 [ZJOI2010]排列计数
题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...
- 洛谷P2606 [ZJOI2010]排列计数
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 洛谷P2602 [ZJOI2010]数字计数(数位dp)
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...
- P2606 [ZJOI2010]排列计数
P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
- 洛谷 P2602 [ZJOI2010]数字计数
洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于 ...
随机推荐
- BZOJ1453:[WC]Dface双面棋盘
浅谈树状数组与线段树:https://www.cnblogs.com/AKMer/p/9946944.html 题目传送门:https://lydsy.com/JudgeOnline/problem. ...
- ZigBee自组网地址分配与路由协议概述
1. ZigBee简介 ZigBee是基于IEEE802.15.4标准的低功耗局域网协议.根据国际标准规定,ZigBee技术是一种短距离.低功耗的无线通信技术. ZigBee协议从下到上分别为物理层( ...
- eclipse修改workspace
Eclipse是一款很强的Java IDE,我们在开始的时候,往往设定了默认的workspace,当用久在之后,我们可能要去更改一下workspace的位置,但是在启动的时候已经不会显示更改了.下面有 ...
- 双击jar不能运行的解决方法
1.问题描述 使用eclipse导出jar.双击jar文件弹出一个内容为“a java exception has occurred”的错误警告提示! 但是在命令行用 java -jar Em ...
- zoj3826 Hierarchical Notation (字符串模拟)
Hierarchical Notation Time Limit: 2 Seconds Memory Limit: 131072 KB In Marjar University, stude ...
- string实现
#include<iostream> using namespace std; class String{ friend ostream& operator<&l ...
- LeetCode: 492 Construct the Rectangle(easy)
题目: or a web developer, it is very important to know how to design a web page's size. So, given a sp ...
- 删除重复Row记录数据
使用CTE,ROW_NUMBER,PARTITION BY来处理数据表重复记录. 先准备下面的数据: IF OBJECT_ID('tempdb.dbo.#Part') IS NOT NULL DROP ...
- SPOJ SERGRID 【BFS】
思路: 在一个方向上走K步,基础BFS. 注意标记: 注意路径: PS:显著注释是记录路径. #include<bits/stdc++.h> using namespace std; co ...
- underscore.js and moment.js
underscore.js and moment.js underscore.js 一.简介Underscore.js是一个JavaScript实用库,提供了一整套函数式编程的实用功能.它提供了100 ...