题目描述

给定一大小为n的有点权树,每次询问一对点(u,v),问是否能在u到v的简单路径上取三个点权,以这三个权值为边长构成一个三角形。同时还支持单点修改。

输入

第一行两个整数n、q表示树的点数和操作数
第二行n个整数表示n个点的点权
以下n-1行,每行2个整数a、b,表示a是b的父亲(以1为根的情况下)
以下q行,每行3个整数t、a、b
若t=0,则询问(a,b)
若t=1,则将点a的点权修改为b

输出

对每个询问输出一行表示答案,“Y”表示有解,“N”表示无解。

样例输入

5 5
1 2 3 4 5
1 2
2 3
3 4
1 5
0 1 3
0 4 5
1 1 4
0 2 5
0 2 3

样例输出

N
Y
Y
N


题解

朴素LCA+暴力

一开始想到了一个$O(n\log^3n)$的数据结构算法,然后发现自己太naive了= =

由于点权是int范围内的,所以如果想让尽量多的边不构成三角形,那么它们的边权应该为1、1、2、3、5、8、...

这显然是斐波那契数列,而斐波那契数列是指数增长的,到第50项左右就爆int了。

所以可以直接拿出两个点之间的路径,当拿出的超过50个时直接判定能构成三角形,否则排序,暴力。

时间复杂度为$O(q·50·\log 50)$

#include <cstdio>
#include <algorithm>
#define N 100010
using namespace std;
int w[N] , head[N] , to[N << 1] , next[N << 1] , cnt , fa[N] , deep[N] , a[100] , tot;
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x])
fa[to[i]] = x , deep[to[i]] = deep[x] + 1 , dfs(to[i]);
}
bool judge(int x , int y)
{
int i;
tot = 0;
if(deep[x] < deep[y]) swap(x , y);
while(deep[x] > deep[y])
{
a[++tot] = w[x] , x = fa[x];
if(tot > 50) return 1;
}
while(x != y)
{
a[++tot] = w[x] , a[++tot] = w[y] , x = fa[x] , y = fa[y];
if(tot > 50) return 1;
}
a[++tot] = w[x] , sort(a + 1 , a + tot + 1);
for(i = 3 ; i <= tot ; i ++ )
if(a[i] - a[i - 1] < a[i - 2])
return 1;
return 0;
}
int main()
{
int n , m , i , opt , x , y;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &w[i]);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
dfs(1);
while(m -- )
{
scanf("%d%d%d" , &opt , &x , &y);
if(opt) w[x] = y;
else if(judge(x , y)) puts("Y");
else puts("N");
}
return 0;
}

【bzoj3251】树上三角形 朴素LCA+暴力的更多相关文章

  1. BZOJ3251:树上三角形(乱搞)

    Description 给定一大小为n的有点权树,每次询问一对点(u,v),问是否能在u到v的简单路径上取三个点权,以这三个权值为边长构成一个三角形.同时还支持单点修改. Input 第一行两个整数n ...

  2. bzoj3251: 树上三角形(思维题)

    神tmWA了8发调了20min才发现输出没回车T T... 首先考虑一段什么样的序列才会是N... 显然最长的形式就是斐波那契,前两数之和等于第三数之和,这样就无法组成三角形并且序列最长.可以发现在i ...

  3. BZOJ 3251 树上三角形:LCA【构成三角形的结论】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3251 题意: 给你一棵树,n个节点,每个点的权值为w[i]. 接下来有m个形如(p,a,b ...

  4. BZOJ3251 : 树上三角形

    BZOJ AC1000题纪念~~~ 将x到y路径上的点权从小到大排序 如果不存在b[i]使得b[i]+b[i+1]>b[i+2]则无解 此时b数列增长速度快于斐波那契数列,当达到50项时就会超过 ...

  5. 树上三角形 BZOJ3251

    分析: 模拟赛T3,其实很水,当时出于某些原因,没有去写这道题... len>46必定有解 为了满足不是三角形,那么斐波那契数列是最优选择,而斐波那契数列的第46项超过了2^31-1,所以超过4 ...

  6. 【BZOJ3251】树上三角形 暴力

    [BZOJ3251]树上三角形 Description 给定一大小为n的有点权树,每次询问一对点(u,v),问是否能在u到v的简单路径上取三个点权,以这三个权值为边长构成一个三角形.同时还支持单点修改 ...

  7. HDU 1524 树上无环博弈 暴力SG

    一个拓扑结构的图,给定n个棋的位置,每次可以沿边走,不能操作者输. 已经给出了拓扑图了,对于每个棋子找一遍SG最后SG和就行了. /** @Date : 2017-10-13 20:08:45 * @ ...

  8. 【bzoj4668】冷战 并查集按秩合并+朴素LCA

    题目描述 1946 年 3 月 5 日,英国前首相温斯顿·丘吉尔在美国富尔顿发表“铁幕演说”,正式拉开了冷战序幕. 美国和苏联同为世界上的“超级大国”,为了争夺世界霸权,两国及其盟国展开了数十年的斗争 ...

  9. [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

随机推荐

  1. C基础的练习集及测试答案(16-30)

    16.(课堂)输入一个年份(正整数),判断这年是否是闰年.闰年判断标准:年份能被4整除:如若遇到100的倍数,则需判断年份能否被400整除.(逢4一闰,逢百不闰,逢400又闰) #if 0 .(课堂) ...

  2. MovieReview—Black Panther(黑豹)

    Justice & Evil   The night before the night, i saw the latest movie in the Marvel series at JiaH ...

  3. 101个MySQL的调节和优化技巧

    MySQL是一个功能强大的开源数据库.随着越来越多的数据库驱动的应用程序,人们一直在推动MySQL发展到它的极限.这里是101条调节和优化MySQL安装的技巧.一些技巧是针对特定的安装环境的,但这些思 ...

  4. [论文理解] Connectionist Text Proposal Network

    Connectionist Text Proposal Network 简介 CTPN是通过VGG16后在特征图上采用3*3窗口进行滑窗,采用与RPN类似的anchor机制,固定width而只预测an ...

  5. springboot autoconfig

    springboot自动配置的核心思想是:springboot通过spring.factories能把main方法所在类路径以外的bean自动加载 springboot starter验证 我在spr ...

  6. Feign-手动创建FeignClient

    前言 在<Feign-请求不同注册中心的服务>中,提到,如果需要请求不同注册中心的服务,可以设置@FeignClient的url属性. 这种做法有个缺点,需要服务消费者,配置各个环境的ur ...

  7. LINQ结合正则表达式查询文件系统

    string startFolder = @"D:\Program Files (x86)\Microsoft Visual Studio 12.0\"; IEnumerable& ...

  8. ReactiveCocoa概念解释篇

    1.ReactiveCocoa简介 ReactiveCocoa(简称为RAC),是由Github开源的一个应用于iOS和OS开发的新框架,Cocoa是苹果整套框架的简称,因此很多苹果框架喜欢以Coco ...

  9. 哈希表(Hash Table)/散列表(Key-Value)

    目录 1. 哈希表的基本思想 2. 哈希表的相关基本概念 1.概念: 2.哈希表和哈希函数的标准定义: 1)冲突: 2)安全避免冲突的条件: 3)冲突不可能完全避免 4)影响冲突的因素 3. 哈希表的 ...

  10. 如何封装RESTful Web Service

    所谓Web Service是一个平台独立的,低耦合的,自包含的.可编程的Web应用程序,有了Web Service异构系统之间就可以通过XML或JSON来交换数据,这样就可以用于开发分布式的互操作的应 ...