3192: [JLOI2013]删除物品

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 872  Solved: 508
[Submit][Status][Discuss]

Description

 
箱子再分配问题需要解决如下问题:
 (1)一共有N个物品,堆成M堆。
 (2)所有物品都是一样的,但是它们有不同的优先级。
 (3)你只能够移动某堆中位于顶端的物品。
 (4)你可以把任意一堆中位于顶端的物品移动到其它某堆的顶端。若此物品是当前所有物品中优先级最高的,可以直接将之删除而不用移动。
 
(5)求出将所有物品删除所需的最小步数。删除操作不计入步数之中。
 (6)只是一个比较难解决的问题,这里你只需要解决一个比较简单的版本:
         不会有两个物品有着相同的优先级,且M=2
 

Input

第一行是包含两个整数N1,N2分别表示两堆物品的个数。
接下来有N1行整数按照从顶到底的顺序分别给出了第一堆物品中的优先级,数字越大,优先级越高。
再接下来的N2行按照同样的格式给出了第二堆物品的优先级。
 

Output

对于每个数据,请输出一个整数,即最小移动步数。
 

Sample Input

3 3
1
4
5
2
7
3

Sample Output

6

HINT

1<=N1+N2<=100000

Source

开始水博

接着上一个纪元讲的内容

这道题其实模拟就好,看题解前最好手动模拟一下

(快去模拟!)

那么在模拟时,容易想到的优化是把两个栈的栈顶接上,直接维护数列

维护时可以排序一遍,得出每个元素的顺序

比如对于5 4 1 2 7 3

排完序就是3 4 6 2 1 5

接下来维护一个01序列,表示第i位是否被弹出

那么答案就是按照排序后序列求01区间和(其实有好多细节哦)

取出一个数后置零即可

 #include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
#define LL long long
using namespace std;
int rank[],num[];
int bit[],n;
int lb(int x){
return x&(-x);
}
int cmp(const int a,const int b){
return num[a]>num[b];
}
LL q(int x){
LL ans=;
while(x){
ans+=bit[x];
x-=lb(x);
}
return ans;
}
int c(int x,int v){
while(x<=n){
bit[x]+=v;
x+=lb(x);
}
return ;
}
int main(){
int a,b;
scanf("%d %d",&a,&b);
n=a+b;
for(int i=;i<=n;i++)rank[i]=i;
rank[]=a;
for(int i=a;i;--i)scanf("%d",&num[i]);
for(int i=;i<=b;i++)scanf("%d",&num[i+a]);
sort(rank+,rank+n+,cmp);
for(int i=;i<=n;i++)c(i,);
LL ans=;
for(int i=;i<=n;i++){
if(rank[i]>rank[i-])ans+=q(rank[i]-)-q(rank[i-]);
else ans+=q(rank[i-])-q(rank[i]);//????????????????rank?????
c(rank[i],-);
}
printf("%lld\n",ans);
return ;
}

[bzoj3192][JLOI2013]删除物品(树状数组)的更多相关文章

  1. [JLOI2013]删除物品 树状数组

    当时考试时间剩下太短了然后就挂掉了..其实是个简单的数据结构. 话说一看最小还以为是动规呢.. 将两堆头对头排.比如样例就是 541|273 因为是必须有优先级次序,依次拿的话,看优先级大小相邻的两个 ...

  2. [bzoj3192][JLOI2013]删除物品_树状数组_栈

    删除物品 bzoj-3192 JLOI-2013 题目大意:给你n个物品,分成2堆.所有的物品有不同的优先级.我只可以将一堆中的堆顶移动到另一个堆的堆顶.而如果当前物品是全局所有物品中优先级最高的,我 ...

  3. bzoj3192: [JLOI2013]删除物品(树状数组)

    既然要从一个堆的堆顶按顺序拿出来放到第二个堆的堆顶,那么我们就可以把两个堆顶怼在一起,这样从一个堆拿到另一个堆只需要移动指针就好了. 换句话说,把1~n倒着,n+1到n+m正着,用一个指针把两个序列分 ...

  4. bzoj3192 [JLOI2013]删除物品

    用数组表示两个栈,将两个栈的栈顶并在一起,用树状数组维护一下操作即可. 代码 #include<cstdio> #include<algorithm> #include< ...

  5. BZOJ3192: [JLOI2013]删除物品(splay)

    Description   箱子再分配问题需要解决如下问题:  (1)一共有N个物品,堆成M堆.  (2)所有物品都是一样的,但是它们有不同的优先级.  (3)你只能够移动某堆中位于顶端的物品.  ( ...

  6. 1057. Stack (30) - 树状数组

    题目如下: Stack is one of the most fundamental data structures, which is based on the principle of Last ...

  7. BZOJ 3192: [JLOI2013]删除物品 奇淫技巧&树状数组

    点我看题 这题十分奇淫技巧...QAQ因为知道是树状数组的题QAQ刚开始以为维护两个数组的树状数组然后模拟从大到小,然后发现不会打QAQ 于是悄悄咪咪翻开题解了. 实际上两个数组可以看做一个数组 如 ...

  8. BZOJ 3192: [JLOI2013]删除物品(树状数组)

    题面: https://www.lydsy.com/JudgeOnline/problem.php?id=3192 题解: 首先每次一定是来回移动直到最大的到顶上. 所以我们可以将第两个堆的堆顶接起来 ...

  9. BZOJ3192:[JLOI2013]删除物品——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3192 箱子再分配问题需要解决如下问题: (1)一共有N个物品,堆成M堆. (2)所有物品都是一样的 ...

随机推荐

  1. 支持向量机(SVM)相关免费学习视频集锦

    http://www.matlabsky.com/thread-36823-1-1.html [其它] 支持向量机(SVM)相关免费学习视频集锦    [复制链接]     faruto 签到天数: ...

  2. jQuery.serialize() 函数详解////////////z

    serialize()函数用于序列化一组表单元素,将表单内容编码为用于提交的字符串. serialize()函数常用于将表单内容序列化,以便用于AJAX提交. 该函数主要根据用于提交的有效表单控件的n ...

  3. SQL语句大全(转载)

    经典SQL语句大全 一.基础 1.说明:创建数据库CREATE DATABASE database-name 2.说明:删除数据库drop database dbname3.说明:备份sql serv ...

  4. c#:如何处理对对象进行深度拷贝

    /// <summary> /// 对对象进行深度拷贝 /// </summary> /// <param name="obj"></pa ...

  5. cache与MMU与总线仲裁

    为了以合理的价格,设计容量和速度满足计算机系统的需求,计算机体系结构设计者设计出了存储器的层次结构. "Cache-主存"和"主存-辅存"是最常见的两种层次结构 ...

  6. Java开发环境的配置与Hello World

    一.Java开发需要做的准备 Java程序的执行过程是首先由Java编译器将以.java为后缀的Java源文件编译成.class字节码文件.然后字节码文件便可以由JVM虚拟机进行加载并执行. 在初学J ...

  7. Material Design Lite,简洁惊艳的前端工具箱。

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博客地址为http://www.cnblogs.com/jasonnode/ .网站上有对应每一 ...

  8. 定位和xml解析和gson解析加上拉加载,下拉刷新

    这里的上拉加载,下拉刷新用到是依赖包 Mainactivity,xml解析和定位 package com.exmple.autolayout; import java.util.List; impor ...

  9. python学习笔记之装饰器、递归、算法(第四天)

    参考老师的博客: 金角:http://www.cnblogs.com/alex3714/articles/5161349.html 银角:http://www.cnblogs.com/wupeiqi/ ...

  10. webService-cxf

    官网必备包,自己研究api:http://cxf.apache.org/download.html 然后就是一个简单的例子了: 先服务端: package com.cxf; import javax. ...