题意:给n个数,从n个数中抽取x(x>=1)个数,这x个数相乘为完全平方数,求一共有多少种取法,结果模1000000007。

思路:每个数可以拆成素数相乘的形式,例如:

 x1   2=2^1 * 3^0 * 5^0;

 x2   3=2^0 * 3^1 * 5^0;

 x3   4=2^2 * 3^0 * 5^0;

 x4   5=2^0 * 3^0 * 5^1;

 x5   6=2^1 * 3^1 * 5^0;

 x6   15=2^0 * 3^1 * 5^1;

用xi表示第i个数选或不选,xi的取值为0或1;因为相乘结果为完全平方数,所以最后的完全平方数表示成素数相乘的形式后,每个素数的幂一定是偶数,即模2等于0:

 2   (x1+2*x3+x5)%2=0

 3   (x2+x5+x6)%2=0

 5   (x4+x6)%2=0

将上面的式子转化为异或方程组,求解有m个自由变量,每个自由变量都可以取0或1,最终答案为2^m-1(去掉全0的情况);

#include <bits/stdc++.h>
using namespace std;
#define MAXN 2000
int prime[MAXN+];
int a[MAXN+][];
int free_num;
int free_x[MAXN];
int x[];
int equ,var;
const int mod=;
void getprime()
{
int i,j;
memset(prime,,sizeof(prime));
prime[]=prime[]=;
for(i=;i<=MAXN;i++)
{
if(prime[i])
prime[++prime[]]=i;
for(j=;j<=prime[]&&i*prime[j]<=MAXN;j++)
{
prime[i*prime[j]]=;
if(i%prime[j]==)
break;
}
}
}
void geta(int id,long long num)
{
int i;
i=;
while(num!=)
{
while(num%prime[i]==)
{
num/=prime[i];
a[i-][id]^=;
}
i++;
}
}
//返回值为-1表示无解,为0是唯一解,否则返回自由变元个数
int Gauss()
{
int max_r, col, k;
free_num = ;
for(k = , col = ; k < equ && col < var; k++, col++)
{
max_r = k;
for(int i = k ; i < equ; i++)
if(abs(a[i][col]==)
{
max_r = i;
break;
}
if(a[max_r][col] == )
{
k--;
free_x[free_num++] = col; //自由变元
continue;
}
if(max_r != k)
{
for(int j = col; j < var+; j++)
swap(a[k][j],a[max_r][j]);
}
for(int i = k+; i < equ;i++)
if(a[i][col] != )
for(int j = col; j < var+;j++)
a[i][j] ^= a[k][j];
}
for(int i = k;i < equ;i++)
if(a[i][col] != )
return -;
if(k < var)return var-k;
return ;
}
int main()
{
int ans;
int t;
int n;
int i;
int cas;
int freex;
long long num;
scanf("%d",&t);
getprime();
//printf("%d\n",prime[0]);
for(cas=;cas<=t;cas++)
{
memset(a,,sizeof(a));
scanf("%d",&n);
for(i=;i<n;i++)
{
scanf("%I64d",&num);
geta(i,num);
}
equ=prime[];
var=n;
freex=Gauss();
//printf("::%d\n",freex);
if(freex==-)
ans=;
else if(freex==)
ans=;
else
{
ans=;
for(i=;i<freex;i++)
{
ans=(*ans)%mod;
}
ans--;
}
printf("Case #%d:\n%d\n",cas,ans);
}
return ;
}

HDU 5833 Zhu and 772002(高斯消元)的更多相关文章

  1. hdu 5833 Zhu and 772002 高斯消元

    Zhu and 772002 Problem Description Zhu and 772002 are both good at math. One day, Zhu wants to test ...

  2. HDU - 5833: Zhu and 772002 (高斯消元-自由元)

    pro:给定N个数Xi(Xi<1e18),保证每个数的素因子小于2e3:问有多少种方案,选处一些数,使得数的乘积是完全平方数.求答案%1e9+7: N<300; sol:小于2e3的素数只 ...

  3. HDU 5833 Zhu and 772002

    HDU 5833 Zhu and 772002 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  4. hdu 5833 Zhu and 772002 ccpc网络赛 高斯消元法

    传送门:hdu 5833 Zhu and 772002 题意:给n个数,每个数的素数因子不大于2000,让你从其中选则大于等于1个数相乘之后的结果为完全平方数 思路: 小于等于2000的素数一共也只有 ...

  5. HDU 5833 Zhu and 772002 (高斯消元)

    Zhu and 772002 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5833 Description Zhu and 772002 are b ...

  6. HDU 5755 Gambler Bo(高斯消元)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5755 [题目大意] 一个n*m由0,1,2组成的矩阵,每次操作可以选取一个方格,使得它加上2之后对 ...

  7. HDU 4818 RP problem (高斯消元, 2013年长春区域赛F题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4818 深深地补一个坑~~~ 现场赛坑在这题了,TAT.... 今天把代码改了下,过掉了,TAT 很明显 ...

  8. ACM学习历程—HDU 3949 XOR(xor高斯消元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 题目大意是给n个数,然后随便取几个数求xor和,求第k小的.(重复不计算) 首先想把所有xor的 ...

  9. 2014多校第一场J题 || HDU 4870 Rating(DP || 高斯消元)

    题目链接 题意 :小女孩注册了两个比赛的帐号,初始分值都为0,每做一次比赛如果排名在前两百名,rating涨50,否则降100,告诉你她每次比赛在前两百名的概率p,如果她每次做题都用两个账号中分数低的 ...

  10. HDU 3571 N-dimensional Sphere(高斯消元 数论题)

    这道题算是比较综合的了,要用到扩展欧几里得,乘法二分,高斯消元. 看了题解才做出来orz 基本思路是这样,建一个n*(n-1)的行列式,然后高斯消元. 关键就是在建行列式时会暴long long,所以 ...

随机推荐

  1. R语言爬虫初尝试-基于RVEST包学习

    注意:这文章是2月份写的,拉勾网早改版了,代码已经失效了,大家意思意思就好,主要看代码的使用方法吧.. 最近一直在用且有维护的另一个爬虫是KINDLE 特价书爬虫,blog地址见此: http://w ...

  2. PHP Object 转 Array,Json 转 Array

    object 转 array /** * object 转 array */ function object_to_array($obj){ $_arr = is_object($obj)? get_ ...

  3. JSON.parse和eval的区别

    JSON.parse和eval的区别 JSON(JavaScript Object Notation)是一种轻量级的数据格式,采用完全独立于语言的文本格式,是理想的数据交换格式.同时,JSON是Jav ...

  4. C和指针 第四章 习题

    4.1正数的n的平方根可以通过: ai+1= (ai + n / ai ) / 2 得到,第一个a1是1,结果会越来越精确. #include <stdio.h> int main() { ...

  5. Java Native Interface 编程系列一

    本文是<Java Native Interface Programmer's Guide and Specification>的读书笔记 Java Native Interface可以让编 ...

  6. iOS上架ipa上传问题那些事

    iOS上架ipa上传问题那些事 原文: http://www.jianshu.com/p/1e22543285c2 字数513 阅读312 评论0 喜欢1 通过xcode直接打包上传,不会提示你的ip ...

  7. 常用的windows cmd 的使用

    cd/:返回根目录 cd 文件名:进入某文件 md 文件名:新建文件 dir:显示当前文件夹内的文件目录 del:删除文件 rd:删除空目录(目录中不能有子目录和文件) deltree:删除目录并删除 ...

  8. Host文件设置

    地址:C:\Windows\System32\drivers\etc 可以在注释语句前加入 "#" hosts文件是Windows系统中一个负责IP地址与域名快递解析的文件,以AS ...

  9. SQLite入门语句之HAVING和DISTINCT

    一.SQLite入门语句之HAVING HAVING 子句允许指定条件来过滤将出现在最终结果中的分组结果. WHERE 子句在所选列上设置条件,而 HAVING 子句则在由 GROUP BY 子句创建 ...

  10. iOS 图片选择器 总结

    UIImagePickerController #pragma mark 从用户相册获取活动图片 - (void)pickImageFromAlbum{ imagePicker = [[UIImage ...