题意:给n个数,从n个数中抽取x(x>=1)个数,这x个数相乘为完全平方数,求一共有多少种取法,结果模1000000007。

思路:每个数可以拆成素数相乘的形式,例如:

 x1   2=2^1 * 3^0 * 5^0;

 x2   3=2^0 * 3^1 * 5^0;

 x3   4=2^2 * 3^0 * 5^0;

 x4   5=2^0 * 3^0 * 5^1;

 x5   6=2^1 * 3^1 * 5^0;

 x6   15=2^0 * 3^1 * 5^1;

用xi表示第i个数选或不选,xi的取值为0或1;因为相乘结果为完全平方数,所以最后的完全平方数表示成素数相乘的形式后,每个素数的幂一定是偶数,即模2等于0:

 2   (x1+2*x3+x5)%2=0

 3   (x2+x5+x6)%2=0

 5   (x4+x6)%2=0

将上面的式子转化为异或方程组,求解有m个自由变量,每个自由变量都可以取0或1,最终答案为2^m-1(去掉全0的情况);

#include <bits/stdc++.h>
using namespace std;
#define MAXN 2000
int prime[MAXN+];
int a[MAXN+][];
int free_num;
int free_x[MAXN];
int x[];
int equ,var;
const int mod=;
void getprime()
{
int i,j;
memset(prime,,sizeof(prime));
prime[]=prime[]=;
for(i=;i<=MAXN;i++)
{
if(prime[i])
prime[++prime[]]=i;
for(j=;j<=prime[]&&i*prime[j]<=MAXN;j++)
{
prime[i*prime[j]]=;
if(i%prime[j]==)
break;
}
}
}
void geta(int id,long long num)
{
int i;
i=;
while(num!=)
{
while(num%prime[i]==)
{
num/=prime[i];
a[i-][id]^=;
}
i++;
}
}
//返回值为-1表示无解,为0是唯一解,否则返回自由变元个数
int Gauss()
{
int max_r, col, k;
free_num = ;
for(k = , col = ; k < equ && col < var; k++, col++)
{
max_r = k;
for(int i = k ; i < equ; i++)
if(abs(a[i][col]==)
{
max_r = i;
break;
}
if(a[max_r][col] == )
{
k--;
free_x[free_num++] = col; //自由变元
continue;
}
if(max_r != k)
{
for(int j = col; j < var+; j++)
swap(a[k][j],a[max_r][j]);
}
for(int i = k+; i < equ;i++)
if(a[i][col] != )
for(int j = col; j < var+;j++)
a[i][j] ^= a[k][j];
}
for(int i = k;i < equ;i++)
if(a[i][col] != )
return -;
if(k < var)return var-k;
return ;
}
int main()
{
int ans;
int t;
int n;
int i;
int cas;
int freex;
long long num;
scanf("%d",&t);
getprime();
//printf("%d\n",prime[0]);
for(cas=;cas<=t;cas++)
{
memset(a,,sizeof(a));
scanf("%d",&n);
for(i=;i<n;i++)
{
scanf("%I64d",&num);
geta(i,num);
}
equ=prime[];
var=n;
freex=Gauss();
//printf("::%d\n",freex);
if(freex==-)
ans=;
else if(freex==)
ans=;
else
{
ans=;
for(i=;i<freex;i++)
{
ans=(*ans)%mod;
}
ans--;
}
printf("Case #%d:\n%d\n",cas,ans);
}
return ;
}

HDU 5833 Zhu and 772002(高斯消元)的更多相关文章

  1. hdu 5833 Zhu and 772002 高斯消元

    Zhu and 772002 Problem Description Zhu and 772002 are both good at math. One day, Zhu wants to test ...

  2. HDU - 5833: Zhu and 772002 (高斯消元-自由元)

    pro:给定N个数Xi(Xi<1e18),保证每个数的素因子小于2e3:问有多少种方案,选处一些数,使得数的乘积是完全平方数.求答案%1e9+7: N<300; sol:小于2e3的素数只 ...

  3. HDU 5833 Zhu and 772002

    HDU 5833 Zhu and 772002 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  4. hdu 5833 Zhu and 772002 ccpc网络赛 高斯消元法

    传送门:hdu 5833 Zhu and 772002 题意:给n个数,每个数的素数因子不大于2000,让你从其中选则大于等于1个数相乘之后的结果为完全平方数 思路: 小于等于2000的素数一共也只有 ...

  5. HDU 5833 Zhu and 772002 (高斯消元)

    Zhu and 772002 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5833 Description Zhu and 772002 are b ...

  6. HDU 5755 Gambler Bo(高斯消元)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5755 [题目大意] 一个n*m由0,1,2组成的矩阵,每次操作可以选取一个方格,使得它加上2之后对 ...

  7. HDU 4818 RP problem (高斯消元, 2013年长春区域赛F题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4818 深深地补一个坑~~~ 现场赛坑在这题了,TAT.... 今天把代码改了下,过掉了,TAT 很明显 ...

  8. ACM学习历程—HDU 3949 XOR(xor高斯消元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 题目大意是给n个数,然后随便取几个数求xor和,求第k小的.(重复不计算) 首先想把所有xor的 ...

  9. 2014多校第一场J题 || HDU 4870 Rating(DP || 高斯消元)

    题目链接 题意 :小女孩注册了两个比赛的帐号,初始分值都为0,每做一次比赛如果排名在前两百名,rating涨50,否则降100,告诉你她每次比赛在前两百名的概率p,如果她每次做题都用两个账号中分数低的 ...

  10. HDU 3571 N-dimensional Sphere(高斯消元 数论题)

    这道题算是比较综合的了,要用到扩展欧几里得,乘法二分,高斯消元. 看了题解才做出来orz 基本思路是这样,建一个n*(n-1)的行列式,然后高斯消元. 关键就是在建行列式时会暴long long,所以 ...

随机推荐

  1. Codeforces Round #262 (Div. 2) 1004

    Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...

  2. PHP图像裁剪为任意大小的图像,图像不变形,不留下空白

    <?php /** * 说明:函数功能是把一个图像裁剪为任意大小的图像,图像不变形 * 参数说明:输入 需要处理图片的 文件名,生成新图片的保存文件名,生成新图片的宽,生成新图片的高 */ fu ...

  3. 2.4使用属性在 ASP.NET Web API 2 路由创建一个 REST API

    Web API 2 支持一种新型的路由,称为属性路由.属性路由的一般概述,请参阅属性路由 Web API 2 中.在本教程中,您将使用属性路由创建一个 REST API 集合的书.API 将支持以下操 ...

  4. MySQL 视图

    一.视图是一种虚拟存在的表,并不在数据库中实际存在.数据来自于视频中查询使用的表,在使用视图时动态生成的. 二.视图的优势: (A) 简单:已经是过滤好的复合条件的结果集 (B) 安全:表的权限不能限 ...

  5. mac mysql cmd

    sudo /usr/local/mysql/support-files/mysql.server start sudo /usr/local/mysql/support-files/mysql.ser ...

  6. testng 教程

    Testng 简介: Testng是一套开源测试框架,是从Junit继承而来,testng意为test next generation,主要有以下特性: annotations  注释,如 @test ...

  7. Redis Sentinel机制与用法说明【转】

    本文来自:https://segmentfault.com/a/1190000002680804 概述 Redis-Sentinel是Redis官方推荐的高可用性(HA)解决方案,当用Redis做Ma ...

  8. 改写js原装的alert样式

    1.将下面的js代码单独到一个js文件中,然后在页面中引用 AlertDialog.js //改写js原装的alert样式 var t; var timeclose = 0; var showBack ...

  9. Nginx与Apache的比较

    Nginx与Apache的比较 Nginx相对于Apache的优点 轻量级.同样起web服务,比apache占用更少的资源和内存 抗并发.nginx处理请求是异步非阻塞,而apache则是阻塞型.在高 ...

  10. CentOS7下Oracle的自动备份

    概述 Linux下Oracle自动备份就没有MSSQL那么简单,在Linux下Oracle的备份需要借助crontab 指令,crontab 能够自动执行系统定时任务,通过配置crontab 指向Or ...