在Ubuntu上使用libsvm(附上官网链接以及安装方法)进行SVM的实践:

1、代码演示:(来自一段文本分类的代码)

# encoding=utf8
__author__ = 'wang'
# set the encoding of input file utf-8
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import os
from svmutil import *
import subprocess # get the data in svm format
featureStringCorpusDir = './svmFormatFeatureStringCorpus/'
fileList = os.listdir(featureStringCorpusDir)
# get the number of the files
numFile = len(fileList)
trainX = []
trainY = []
testX = []
testY = []
# enumrate the file
for i in xrange(numFile):
# print i
fileName = fileList[i]
if(fileName.endswith(".libsvm")):
# check the data format
     #
checkdata_py = r"./tool/checkdata.py"
# the file name
svm_file = featureStringCorpusDir + fileName
cmd = 'python {0} {1} '.format(checkdata_py, svm_file)
# print ("excute '{}'".format(cmd))
# print('Check Data...')
check_data = subprocess.Popen(cmd, shell = True, stdout = subprocess.PIPE)
(stdout, stderr) = check_data.communicate()
returncode = check_data.returncode
if returncode == 1:
print stdout
exit(1) y, x = svm_read_problem(svm_file)
trainX += x[:100]
trainY += y[:100]
testX += x[-1:-6:-1]
testY += y[-1:-6:-1] print testX
# train the c-svm model
m = svm_train(trainY, trainX, '-s 0 -c 4 -t 2 -g 0.1 -e 0.1')
# predict the test data
p_label, p_acc, p_val = svm_predict(testY, testX, m)
# output the result to the file
result_file = open("./result.txt","w")
result_file.write( "testY p_label p_val\n")
for c in xrange(len(p_label)):
result_file.write( str(testY[c]) + " " + str(p_label[c]) + " " + str(p_val[c]) + "\n")
result_file.write( "accuracy: " + str(p_acc) + "\n")
result_file.close()
# print p_val

(1)关于训练数据的格式:

The format of training and testing data file is:

<label> <index1>:<value1> <index2>:<value2> ..
.
.
. Each line contains an instance and is ended by a '\n' character. For
classification, <label> is an integer indicating the class label
(multi-class is supported)(如何label是个非数值的,将其转化为数值型). For regression, <label> is
the target value which can be any real number. For one-class SVM, it's not used
so can be any number. The pair <index>:<value> gives a feature (attribute) value:
<index> is an integer starting from 1 and <value> is a real number. The only exception
is the precomputed kernel, where <index> starts from 0; see the section of precomputed kernels.
Indices must be in ASCENDING order(要升序排序). Labels in the testing file are only used to calculate accuracy
or errors. If they are unknown, just fill the first column with any numbers. A sample classification data included in this package is `heart_scale'. To check if your data is
in a correct form, use `tools/checkdata.py' (details in `tools/README'). Type `svm-train heart_scale', and the program will read the training
data and output the model file `heart_scale.model'. If you have a test
set called heart_scale.t, then type `svm-predict heart_scale.t
heart_scale.model output' to see the prediction accuracy. The `output'
file contains the predicted class labels. For classification, if training data are in only one class (i.e., all
labels are the same), then `svm-train' issues a warning message:
`Warning: training data in only one class. See README for details,'
which means the training data is very unbalanced. The label in the
training data is directly returned when testing.

  

(2)svm训练的参数解释来自官方的github:https://github.com/cjlin1/libsvm

`svm-train' Usage
================= Usage: svm-train [options] training_set_file [model_file]
options:
-s svm_type : set type of SVM (default 0)
0 -- C-SVC (multi-class classification)
1 -- nu-SVC (multi-class classification)
2 -- one-class SVM
3 -- epsilon-SVR (regression)
4 -- nu-SVR (regression)
-t kernel_type : set type of kernel function (default 2)
0 -- linear: u'*v
1 -- polynomial: (gamma*u'*v + coef0)^degree
2 -- radial basis function: exp(-gamma*|u-v|^2)
3 -- sigmoid: tanh(gamma*u'*v + coef0)
4 -- precomputed kernel (kernel values in training_set_file)
-d degree : set degree in kernel function (default 3)
-g gamma : set gamma in kernel function (default 1/num_features)
-r coef0 : set coef0 in kernel function (default 0)
-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
-m cachesize : set cache memory size in MB (default 100)
-e epsilon : set tolerance of termination criterion (default 0.001)
-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1) (当数据不平衡时,可给不同的类设置不用的惩罚)
-v n: n-fold cross validation mode
-q : quiet mode (no outputs) The k in the -g option means the number of attributes in the input data. option -v randomly splits the data into n parts and calculates cross
validation accuracy/mean squared error on them. See libsvm FAQ for the meaning of outputs. `svm-predict' Usage
=================== Usage: svm-predict [options] test_file model_file output_file
options:
-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supported model_file is the model file generated by svm-train.
test_file is the test data you want to predict.
svm-predict will produce output in the output_file.

注:  

  nu-SVR: nu回归机。引入能够自动计算epsilon的参数nu。若记错误样本的个数为q ,则nu大于等于q/l,即nu是错误样本的个数所占总样本数的份额的上界;若记支持向量的个数为p,则nu小于等于p/l,即nu是支持向量的个数所占总样本数的份额的下界。首先选择参数nu和C,然后求解最优化问题。

  Shrinking: 即参数-h, 优化求解过程中是否采用shrinking. 边界支持向量BSVs(ai=C的SV)在迭代过程中ai不会变化,如果找到这些点,并把它们固定为C,可以减少QP的规模。

2、运行结果展示并分析部分参数的意思:

*
optimization finished, #iter = 119
nu = 0.272950
obj = -122.758206, rho = -1.384603
nSV = 127, nBSV = 21
* ..............(此处省略部分) *
optimization finished, #iter = 129
nu = 0.214275
obj = -89.691907, rho = -1.105131
nSV = 103, nBSV = 8
*
optimization finished, #iter = 77
nu = 0.147922
obj = -67.825431, rho = 0.984237
nSV = 80, nBSV = 10
Total nSV = 1246
Accuracy = 51.4286% (36/70) (classification)

官方解释:obj is the optimal objective value of the dual SVM problem(obj表示SVM最优化问题对偶式的最优目标值,公式如下图的公式(2)). rho is the bias term in the decision function sgn(w^Tx - rho). nSV and nBSV are number of support vectors and bounded support vectors (i.e., alpha_i = C). nu-svm is a somewhat equivalent form of C-SVM where C is replaced by nu. nu simply shows the corresponding parameter. More details are in libsvm document.

SVM实践的更多相关文章

  1. SVM 实践步骤

    主要公式步骤: 原距离问题的函数: 1.将SVM的距离问题转化为拉格朗日函数: 2.原函数问题化成如下问题:   3.对各非拉格朗日参数求偏导来求min值: 4.将上面 令各偏导等于0 的结果带回 拉 ...

  2. python就业班-淘宝-目录.txt

    卷 TOSHIBA EXT 的文件夹 PATH 列表卷序列号为 AE86-8E8DF:.│ python就业班-淘宝-目录.txt│ ├─01 网络编程│ ├─01-基本概念│ │ 01-网络通信概述 ...

  3. 机器学习算法与Python实践之(四)支持向量机(SVM)实现

    机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/ ...

  4. 机器学习算法与Python实践之(三)支持向量机(SVM)进阶

    机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 zouxy09@qq.com http://blog.csdn.net/ ...

  5. 机器学习算法与Python实践之(二)支持向量机(SVM)初级

    机器学习算法与Python实践之(二)支持向量机(SVM)初级 机器学习算法与Python实践之(二)支持向量机(SVM)初级 zouxy09@qq.com http://blog.csdn.net/ ...

  6. LibLinear(SVM包)使用说明之(三)实践

    LibLinear(SVM包)使用说明之(三)实践 LibLinear(SVM包)使用说明之(三)实践 zouxy09@qq.com http://blog.csdn.net/zouxy09 我们在U ...

  7. 机器学习算法实践:Platt SMO 和遗传算法优化 SVM

    机器学习算法实践:Platt SMO 和遗传算法优化 SVM 之前实现了简单的SMO算法来优化SVM的对偶问题,其中在选取α的时候使用的是两重循环通过完全随机的方式选取,具体的实现参考<机器学习 ...

  8. 4、2支持向量机SVM算法实践

    支持向量机SVM算法实践 利用Python构建一个完整的SVM分类器,包含SVM分类器的训练和利用SVM分类器对未知数据的分类, 一.训练SVM模型 首先构建SVM模型相关的类 class SVM: ...

  9. 机器学习(四):通俗理解支持向量机SVM及代码实践

    上一篇文章我们介绍了使用逻辑回归来处理分类问题,本文我们讲一个更强大的分类模型.本文依旧侧重代码实践,你会发现我们解决问题的手段越来越丰富,问题处理起来越来越简单. 支持向量机(Support Vec ...

随机推荐

  1. jvm死锁解决

    那我们怎么确定一定是死锁呢?有两种方法. 1>使用JDK给我们的的工具JConsole,可以通过打开cmd然后输入jconsole打开. 1)连接到需要查看的进程.

  2. 292. Nim Game

    292. Nim Game You are playing the following Nim Game with your friend: There is a heap of stones on ...

  3. shell--2.shell数组

    shell 数组 (1)定义数组 shell中,用括号表示数组,数组元素用空格分开,定义数组的一般形式 arrt_name=(val1 val2 val3) 或者 arry_name=(val1 va ...

  4. 进阶系列三【绝对干货】----Log4.Net的介绍

    一.介绍 当我们开发软件时,一般都会加入运行期的跟踪手段,以方便后续故障分析和Bug调试..net framework本身提供了一个System.Diagnostics.Trace类来实现流程跟踪功能 ...

  5. WCF X.509验证

    1.证书的制作 makecert.exe -sr LocalMachine -ss My -a sha1 -n CN=ParkingServer -sky exchange -pe makecert. ...

  6. .NET 强引用与弱引用

    强引用      如果应用程序的代码可以访问一个正由该程序使用的对象,垃圾回收器就不能收集该对象, 那么,就认为应用程序对该对象具有强引用.      要建立强引用并重新使用该对象,请将 WeakRe ...

  7. 搭建Git服务器

    在远程仓库一节中,我们讲了远程仓库实际上和本地仓库没啥不同,纯粹为了7x24小时开机并交换大家的修改. GitHub就是一个免费托管开源代码的远程仓库.但是对于某些视源代码如生命的商业公司来说,既不想 ...

  8. hdu 1501 Zipper

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1501 思路:题目要求第三个串由前两个组成,且顺序不能够打乱,搜索大法好 #include<cstdi ...

  9. Java中String,StringBuffer与StringBuilder的差别

    String 字符串常量: StringBuffer 字符串变量〈缓冲区〉(线程安全): StringBuilder 字符串变量〈缓冲区〉(非线程安全): 简要的说, String 类型和 Strin ...

  10. 四种常见的App弹窗设计,你有仔细注意观察吗?

    弹窗又称为对话框,是App与用户进行交互的常见方式之一.弹窗分为模态弹窗和非模态弹窗两种,两者的区别在于需不需要用户对其进行回应.模态弹窗会打断用户的正常操作,要求用户必须对其进行回应,否则不能继续其 ...