环境准备

  • docker-compose 文件
version: "3"
services:
db:
image: oscarfonts/h2
container_name: zeebe_db
ports:
- "1521:1521"
- "81:81"
monitor:
image: camunda/zeebe-simple-monitor
environment:
- spring.datasource.url=jdbc:h2:tcp://db:1521/zeebe-monitor
- io.zeebe.monitor.connectionString=app:26500
ports:
- "8080:8080"
app:
image: camunda/zeebe
environment:
- ZEEBE_LOG_LEVEL=debug
volumes:
- ./zeebe-simple-monitor-exporter-0.10.0.jar:/usr/local/zeebe/lib/zeebe-simple-monitor-exporter.jar
- ./zeebe.cfg.toml:/usr/local/zeebe/conf/zeebe.cfg.toml
ports:
- "26500:26500"
- "26501:26501"
- "26502:26502"
- "26503:26503"
- "26504:26504"
  • exporter 配置
    zeebe.cfg.toml
# Zeebe broker configuration file

# Overview -------------------------------------------

# This file contains a complete list of available configuration options.

# Default values:
#
# When the default value is used for a configuration option, the option is
# commented out. You can learn the default value from this file # Conventions:
#
# Byte sizes
# For buffers and others must be specified as strings and follow the following
# format: "10U" where U (unit) must be replaced with K = Kilobytes, M = Megabytes or G = Gigabytes.
# If unit is omitted then the default unit is simply bytes.
# Example:
# sendBufferSize = "16M" (creates a buffer of 16 Megabytes)
#
# Time units
# Timeouts, intervals, and the likes, must be specified as strings and follow the following
# format: "VU", where:
# - V is a numerical value (e.g. 1, 1.2, 3.56, etc.)
# - U is the unit, one of: ms = Millis, s = Seconds, m = Minutes, or h = Hours
#
# Paths:
# Relative paths are resolved relative to the installation directory of the
# broker. # ---------------------------------------------------- [network] # This section contains the network configuration. Particularly, it allows to
# configure the hosts and ports the broker should bind to. the broker exposes 3
# ports: 1. client: the port on which client (Java, CLI, Go, ...) connections
# are handled 2. management: used internally by the cluster for the gossip
# membership protocol and other management interactions 3. replication: used
# internally by the cluster for replicating data across nodes using the raft
# protocol # Controls the default host the broker should bind to. Can be overwritten on a
# per binding basis for client, management and replication
#
# This setting can also be overridden using the environment variable ZEEBE_HOST.
# host = "0.0.0.0" # If a port offset is set it will be added to all ports specified in the config
# or the default values. This is a shortcut to not always specifying every port.
#
# The offset will be added to the second last position of the port, as Zeebe
# requires multiple ports. As example a portOffset of 5 will increment all ports
# by 50, i.e. 26500 will become 26550 and so on.
#
# This setting can also be overridden using the environment variable ZEEBE_PORT_OFFSET.
# portOffset = 0 # Controls the default size of the buffers that are used for buffering outgoing
# messages. Can be overwritten on a per binding basis for client, management and
# replication
# defaultSendBufferSize = "16M" [network.gateway] # Enables embedded gateway to start
# enabled = true
#
# Overrides the host the gateway binds to
# host = "localhost"
#
# Sets the port the gateway binds to
# port = 26500 [network.client] # Allows to override the host the client api binds to
# host = "localhost"
#
# The port the client api binds to
# port = 26501
#
# Overrides the size of the buffer used for buffering outgoing messages to
# clients
# sendBufferSize = "16M"
#
# Sets the size of the buffer used for receiving control messages from clients
# (such as management of subscriptions)
# controlMessageBufferSize = "8M" [network.management] # Overrides the host the management api binds to
# host = "localhost"
#
# Sets the port the management api binds to
# port = 26502
#
# Overrides the size of the buffer to be used for buffering outgoing messages to
# other brokers through the management protocols
# sendBufferSize = "16M"
#
# Sets the buffer size used for receiving gossip messages and others
# receiveBufferSize = "8M" [network.replication] # Overrides the host the replication api binds to
# host = "localhost"
#
# Sets the port the replication api binds to
# port = 26503
#
# Sets the buffer size used for buffering outgoing raft (replication) messages
# sendBufferSize = "16M" [network.subscription] # Overrides the host the subscription api binds to
# host = "localhost"
#
# Sets the port the subscription api binds to
# port = 26504
#
# Overrides the size of the buffer to be used for buffering outgoing messages to
# other brokers through the subscription protocols
# sendBufferSize = "16M"
#
# Sets the buffer size used for receiving subscription messages and others
# receiveBufferSize = "8M" [data] # This section allows to configure Zeebe's data storage. Data is stored in
# "partition folders". A partition folder has the following structure:
#
# internal-system-0 (root partition folder)
# ├── partition.json (metadata about the partition)
# ├── segments (the actual data as segment files)
# │ ├── 00.data
# │ └── 01.data
# └── snapshots (snapshot data)
# # Specify a list of directories in which data is stored. Using multiple
# directories makes sense in case the machine which is running Zeebe has
# multiple disks which are used in a JBOD (just a bunch of disks) manner. This
# allows to get greater throughput in combination with a higher io thread count
# since writes to different disks can potentially be done in parallel.
#
# This setting can also be overridden using the environment variable ZEEBE_DIRECTORIES.
# directories = [ "data" ] # The default size of data segments.
# defaultSegmentSize = "512M" # How often we take snapshots of streams (time unit)
# snapshotPeriod = "15m" # How often follower partitions will check for new snapshots to replicate from
# the leader partitions. Snapshot replication enables faster failover by
# reducing how many log entries must be reprocessed in case of leader change.
# snapshotReplicationPeriod = "5m" [cluster] # This section contains all cluster related configurations, to setup an zeebe cluster # Specifies the unique id of this broker node in a cluster.
# The id should be between 0 and number of nodes in the cluster (exclusive).
#
# This setting can also be overridden using the environment variable ZEEBE_NODE_ID.
# nodeId = 0 # Controls the number of partitions, which should exist in the cluster.
#
# This can also be overridden using the environment variable ZEEBE_PARTITIONS_COUNT.
# partitionsCount = 1 # Controls the replication factor, which defines the count of replicas per partition.
# The replication factor cannot be greater than the number of nodes in the cluster.
#
# This can also be overridden using the environment variable ZEEBE_REPLICATION_FACTOR.
# replicationFactor = 1 # Specifies the zeebe cluster size. This value is used to determine which broker
# is responsible for which partition.
#
# This can also be overridden using the environment variable ZEEBE_CLUSTER_SIZE.
# clusterSize = 1 # Allows to specify a list of known other nodes to connect to on startup
# The contact points of the management api must be specified.
# The format is [HOST:PORT]
# Example:
# initialContactPoints = [ "192.168.1.22:26502", "192.168.1.32:26502" ]
#
# This setting can also be overridden using the environment variable ZEEBE_CONTACT_POINTS
# specifying a comma-separated list of contact points.
#
# Default is empty list:
# initialContactPoints = [] [threads] # Controls the number of non-blocking CPU threads to be used. WARNING: You
# should never specify a value that is larger than the number of physical cores
# available. Good practice is to leave 1-2 cores for ioThreads and the operating
# system (it has to run somewhere). For example, when running Zeebe on a machine
# which has 4 cores, a good value would be 2.
#
# The default value is 2.
#cpuThreadCount = 2 # Controls the number of io threads to be used. These threads are used for
# workloads that write data to disk. While writing, these threads are blocked
# which means that they yield the CPU.
#
# The default value is 2.
#ioThreadCount = 2 [metrics] # Path to the file to which metrics are written. Metrics are written in a
# text-based format understood by prometheus.io
# metricsFile = "metrics/zeebe.prom" # Controls the interval at which the metrics are written to the metrics file
# reportingInterval = "5s" [gossip] # retransmissionMultiplier = 3
# probeInterval = "1s"
# probeTimeout = "500ms"
# probeIndirectNodes = 3
# probeIndirectTimeout = "1s"
# suspicionMultiplier = 5
# syncTimeout = "3s"
# syncInterval = "15s"
# joinTimeout = "1s"
# joinInterval = "5s"
# leaveTimeout = "1s"
# maxMembershipEventsPerMessage = 32
# maxCustomEventsPerMessage = 8 [raft] # heartbeatInterval = "250ms"
# electionInterval = "1s"
# leaveTimeout = "1s" # Configure exporters below; note that configuration parsing conventions do not apply to exporter
# arguments, which will be parsed as normal TOML.
#
# Each exporter should be configured following this template:
#
# id:
# property should be unique in this configuration file, as it will server as the exporter
# ID for loading/unloading.
# jarPath:
# path to the JAR file containing the exporter class. JARs are only loaded once, so you can define
# two exporters that point to the same JAR, with the same class or a different one, and use args
# to parametrize its instantiation.
# className:
# entry point of the exporter, a class which *must* extend the io.zeebe.exporter.Exporter
# interface.
#
# A nested table as [exporters.args] will allow you to inject arbitrary arguments into your
# class through the use of annotations.
#
# Enable the following exporter to get debug output of the exporter records
#
# [[exporters]]
# id = "debug"
# className = "io.zeebe.broker.exporter.DebugExporter"
# [exporters.args]
# logLevel = "debug"
# prettyPrint = false
#
# An example configuration for the elasticsearch exporter:
#
[[exporters]]
id = "simple-monitor"
className = "io.zeebe.monitor.SimpleMonitorExporter" [exporters.args]
jdbcUrl = "jdbc:h2:tcp://db:1521/zeebe-monitor" # The driver name of the jdbc driver implementation. Make sure that the implementation is
# available in the exporter/broker classpath (add it to the broker lib folder).
# The name is used to load the driver implementation like this
# Class.forName(configuration.driverName);
#
driverName = "org.h2.Driver"
userName = "sa"
password = "" # To configure the amount of records, which has to be reached before the records are exported to
# the database. Only counts the records which are in the end actually exported.
#
# batchSize = 100; # To configure the time in milliseconds, when the batch should be executed regardless whether the
# batch size was reached or not.
#
#If the value is less then one, then no timer will be scheduled.
#
#batchTimerMilli = 1000 #id = "elasticsearch"
#className = "io.zeebe.exporter.ElasticsearchExporter"
#
# [exporters.args]
# url = "http://localhost:9200"
#
# [exporters.args.bulk]
# delay = 5
# size = 1_000
#
# [exporters.args.index]
# prefix = "zeebe-record"
# createTemplate = true
#
# command = false
# event = true
# rejection = false
#
# deployment = true
# incident = true
# job = true
# message = false
# messageSubscription = false
# raft = false
# workflowInstance = true
# workflowInstanceSubscription = false
  • export
    可以从github 下载,或者直接使用我项目的jar 包

运行

  • 启动
docker-compose up -d
  • 效果
    monitor UI
  • 部署一个简单流程
    flow 内容如下:
<?xml version="1.0" encoding="UTF-8"?>
<bpmn:definitions xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL" xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI" xmlns:di="http://www.omg.org/spec/DD/20100524/DI" xmlns:dc="http://www.omg.org/spec/DD/20100524/DC" xmlns:camunda="http://camunda.org/schema/1.0/bpmn" xmlns:zeebe="http://camunda.org/schema/zeebe/1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="Definitions_1" targetNamespace="http://bpmn.io/schema/bpmn" exporter="Camunda Modeler" exporterVersion="1.5.0-nightly">
<bpmn:process id="demoProcess" isExecutable="true">
<bpmn:startEvent id="start" name="start">
<bpmn:outgoing>SequenceFlow_1sz6737</bpmn:outgoing>
</bpmn:startEvent>
<bpmn:sequenceFlow id="SequenceFlow_1sz6737" sourceRef="start" targetRef="taskA" />
<bpmn:sequenceFlow id="SequenceFlow_06ytcxw" sourceRef="taskA" targetRef="taskB" />
<bpmn:sequenceFlow id="SequenceFlow_1oh45y7" sourceRef="taskB" targetRef="taskC" />
<bpmn:endEvent id="end" name="end">
<bpmn:incoming>SequenceFlow_148rk2p</bpmn:incoming>
</bpmn:endEvent>
<bpmn:sequenceFlow id="SequenceFlow_148rk2p" sourceRef="taskC" targetRef="end" />
<bpmn:serviceTask id="taskA" name="task A">
<bpmn:extensionElements>
<zeebe:taskDefinition type="foo" />
</bpmn:extensionElements>
<bpmn:incoming>SequenceFlow_1sz6737</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_06ytcxw</bpmn:outgoing>
</bpmn:serviceTask>
<bpmn:serviceTask id="taskB" name="task B">
<bpmn:extensionElements>
<zeebe:taskDefinition type="bar" />
</bpmn:extensionElements>
<bpmn:incoming>SequenceFlow_06ytcxw</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_1oh45y7</bpmn:outgoing>
</bpmn:serviceTask>
<bpmn:serviceTask id="taskC" name="task C">
<bpmn:extensionElements>
<zeebe:taskDefinition type="foo" />
</bpmn:extensionElements>
<bpmn:incoming>SequenceFlow_1oh45y7</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_148rk2p</bpmn:outgoing>
</bpmn:serviceTask>
</bpmn:process>
<bpmndi:BPMNDiagram id="BPMNDiagram_1">
<bpmndi:BPMNPlane id="BPMNPlane_1" bpmnElement="demoProcess">
<bpmndi:BPMNShape id="_BPMNShape_StartEvent_2" bpmnElement="start">
<dc:Bounds x="173" y="102" width="36" height="36" />
<bpmndi:BPMNLabel>
<dc:Bounds x="180" y="138" width="22" height="12" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id="SequenceFlow_1sz6737_di" bpmnElement="SequenceFlow_1sz6737">
<di:waypoint xsi:type="dc:Point" x="209" y="120" />
<di:waypoint xsi:type="dc:Point" x="310" y="120" />
<bpmndi:BPMNLabel>
<dc:Bounds x="260" y="105" width="0" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="SequenceFlow_06ytcxw_di" bpmnElement="SequenceFlow_06ytcxw">
<di:waypoint xsi:type="dc:Point" x="410" y="120" />
<di:waypoint xsi:type="dc:Point" x="502" y="120" />
<bpmndi:BPMNLabel>
<dc:Bounds x="456" y="105" width="0" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="SequenceFlow_1oh45y7_di" bpmnElement="SequenceFlow_1oh45y7">
<di:waypoint xsi:type="dc:Point" x="602" y="120" />
<di:waypoint xsi:type="dc:Point" x="694" y="120" />
<bpmndi:BPMNLabel>
<dc:Bounds x="648" y="105" width="0" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNShape id="EndEvent_0gbv3sc_di" bpmnElement="end">
<dc:Bounds x="867" y="102" width="36" height="36" />
<bpmndi:BPMNLabel>
<dc:Bounds x="876" y="138" width="18" height="12" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id="SequenceFlow_148rk2p_di" bpmnElement="SequenceFlow_148rk2p">
<di:waypoint xsi:type="dc:Point" x="794" y="120" />
<di:waypoint xsi:type="dc:Point" x="867" y="120" />
<bpmndi:BPMNLabel>
<dc:Bounds x="831" y="105" width="0" height="0" />
</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
<bpmndi:BPMNShape id="ServiceTask_09m0goq_di" bpmnElement="taskA">
<dc:Bounds x="310" y="80" width="100" height="80" />
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="ServiceTask_0sryj72_di" bpmnElement="taskB">
<dc:Bounds x="502" y="80" width="100" height="80" />
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id="ServiceTask_1xu4l3g_di" bpmnElement="taskC">
<dc:Bounds x="694" y="80" width="100" height="80" />
</bpmndi:BPMNShape>
</bpmndi:BPMNPlane>
</bpmndi:BPMNDiagram>
</bpmn:definitions>

使用UI 部署,文件后缀应该为bpmn
效果

参考资料

https://zeebe.io/
https://github.com/zeebe-io/zeebe
https://github.com/rongfengliang/zeebe-docker-compose
https://github.com/zeebe-io/zeebe-simple-monitor

 
 
 
 

zeebe docker-compose 运行(包含monitor)的更多相关文章

  1. dotnet跨平台 - 使用Nginx+Docker Compose运行.NETCore项目

    参考文档: https://docs.docker.com/install/linux/docker-ce/centos/ http://www.dockerinfo.net/document htt ...

  2. .NET遇上Docker - 使用Docker Compose组织Ngnix和.NETCore运行

    本文工具准备: Docker for Windows Visual Studio 2015 与 Visual Studio Tools for Docker 或 Visual Studio 2017 ...

  3. Docker:Docker Compose 详解

    Docker Compose 概述与安装? 前面我们使用 Docker 的时候,定义 Dockerfile 文件,然后使用 docker build.docker run 等命令操作容器.然而微服务架 ...

  4. 使用 pycharm调试docker环境运行的Odoo

    2019日 星期一 安装docker windows系统,参考 docker官方文档 Mac系统,参考 docker官方文档 构建自定义ODOO镜像 标准ODOO镜像可能不包含特别的python模块, ...

  5. Docker学习笔记 - Docker Compose 脚本命令

    Docker Compose 配置文件包含 version.services.networks 三大部分,最关键的是 services 和 networks 两个部分, version: '2' se ...

  6. [phvia/dkc] Docker Compose 快速构建(LNMP+Node)运行环境

    快速构建(LNMP+Node)运行环境. dkc 在此作为 docker-compose 的缩写,你可以理解为 alias dkc=docker-compose 准备 安装 docker 选择1) 从 ...

  7. 利用 Docker Compose 搭建 SpringBoot 运行环境(超详细步骤和分析)

    0.前言 相信点进来看这篇文章的同学们已经对 Docker Dompose 有一定的了解了,下面,我们拿最简单的例子来介绍如何使用 Docker Compose 来管理项目. 本文例子: 一个应用服务 ...

  8. ASP.NET Core 如何在运行Docker容器时指定容器外部端口(docker compose)

    前面我写了一系列关于持续集成的文章,最终构建出来的镜像运行之后,应该会发现每次构建运行之后端口都变了,这对于我们来说是十分不方便的,所以我们可以通过修改docker compose的配置文件来完成我们 ...

  9. [Docker6] Docker compose多容器运行与管理

    六.Docker compose docker compose就是通过yml文件来定义和运行多个容器docker应用程序的工具,三步过程就能跑起一个compose: 定义应用程序的环境(yml中) 定 ...

  10. 附005.Docker Compose文件详解

    一 Docker Compose文件简介 compose文件使用yml格式,主要分为了四个区域: version:用于指定当前docker-compose.yml语法遵循哪个版本 services:服 ...

随机推荐

  1. 第三篇 功能实现(3) (Android学习笔记)

    第三篇 功能实现(3) ●发一个广播和启动一个隐式的Intent非常像,那么它们之间有什么区别呢? Implicit Intents (sent via startActivity( )) and B ...

  2. VSTO:使用C#开发Excel、Word【2】

    <Visual Studio Tools for Office: Using C# with Excel, Word, Outlook, and InfoPath >——By Eric C ...

  3. VSTO杂项拾零(持续更新中……)

    环境:win 7+visual basic 2008     侧重:VSTO     界面:sheetbook工作簿 1.创建一个过程并调用(2017.6.3) Public Class Sheet1 ...

  4. Android: android studio配置生成自定义apk名称

    1.Android Studio 3.0之前: 在build.gradled 的 android {} 内添加如下代码: android.applicationVariants.all { varia ...

  5. adb shell按键操作(input keyevent)

    前言:input keyeven操作发送手机上常用的一些按键操作 一.keyevent事件对应数字 电话键 KEYCODE_CALL: 拨号键 KEYCODE_ENDCALL: 挂机键 KEYCODE ...

  6. Eclipse下SpringBoot没有自动加载application.properties文件

    Eclipse内创建SpringBoot项目,在java/main/resources文件夹下面创建application.properties配置文件,SpringApplication.run后发 ...

  7. SQL注入之Sqli-labs系列第十九关(基于头部的Referer POST报错注入)

    开始挑战第十八关(Header Injection- Referer- Error Based- string) 先来说下HTTP Referer: HTTP Referer是header的一部分,当 ...

  8. 【转载】 opencv, PIL.Image的彩色图片维度 && caffe和pytorch的矩阵维度

    原文地址: https://blog.csdn.net/u011668104/article/details/82718375 ------------------------------------ ...

  9. [转载] python必碰到的问题---encode与decode,中文乱码

    阅读来源: 字符串在Python内部的表示是unicode编码,因此,在做编码转换时,通常需要以unicode作为中间编码,即先将其他编码的字符串解码(decode)成unicode,再从unicod ...

  10. 九度OJ1122题-吃巧克力

    题目1122:吃糖果 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2453 解决:1957 题目描述: 名名的妈妈从外地出差回来,带了一盒好吃又精美的巧克力给名名(盒内共有 N 块巧克力 ...