【问题描述】

p1=(x1,y1), p2=(x2,y2), … , pn=(xn,yn) 是平面上n个点构成的集合S,设计和实现找出集合S中距离最近点对的算法。

  每一个格子最多只能存在一个点,三行最多存在12个顶点,因此对于上图中的第(i=27)个顶点来说,最多只需要比较第27个顶点与之后的11个顶点,对于i之后或之前的11个顶点之外的顶点j,即|i-j|>=12,i与j之间的距离一定大于d,因为i和j已经相隔了至少两行。两个顶点若相隔大于等于两行或两列,则他们之间的距离一定大于等于d

 package org.xiu68.exp.exp3;

 import java.util.ArrayList;
import java.util.List;
import java.util.Random; public class Exp3_2 { //设p1=(x1,y1), p2=(x2,y2), … , pn=(xn,yn)
//是平面上n个点构成的集合S,设计和实现找出集合S中距离最近点对的算法。
public static void main(String[] args) {
// TODO Auto-generated method stub
for(int i=0;i<20;i++){
System.out.println("***************************");
List<Point> pointList=new ArrayList<>();
for(int j=0;j<50;j++){
Point p=new Point(new Random().nextInt(100),new Random().nextInt(100));
pointList.add(p);
}
System.out.println(bruteforce(pointList)); //蛮力法
System.out.println(closestPair(pointList)); //分治法 System.out.println("****************************");
}
} //寻找最近点对
public static double closestPair(List<Point> pointList){
//对pointList中的点按横坐标和纵坐标进行升序排序 List<Point> sortedListX=new ArrayList<>();
List<Point> sortedListY=new ArrayList<>(); //按横坐标对数组进行升序排序
pointList.sort((Point a,Point b)->{
if(a.getX()<b.getX())
return -1;
else
return 1;
});
sortedListX.addAll(pointList); //按纵坐标对数组进行升序排序
pointList.sort((Point a,Point b)->{
if(a.getY()<b.getY())
return -1;
else
return 1;
});
sortedListY.addAll(pointList); /* for(int i=0;i<pointList.size();i++)
System.out.println(sortedListX.get(i));
System.out.println("*********************");
for(int i=0;i<pointList.size();i++)
System.out.println(sortedListY.get(i)); System.out.println("*********************");
System.out.println(divide(sortedListX,sortedListY));*/ return divide(sortedListX,sortedListY); } /*
* 原问题的分解
* sortedListX:横坐标升序排序的数组
* sortedListY:纵坐标升序排序的数组
*/
public static double divide(List<Point> sortedListX,List<Point> sortedListY){
if(sortedListX.size()==1) //如果只有一个元素
return Double.MAX_VALUE;
else if(sortedListX.size()==2) //如果只有两个元素
return dist(sortedListX.get(0),sortedListX.get(1)); else{ //大于2个元素
int mid=sortedListX.size()/2; //在第mid个点处把点分成左右相等的两部分
double L=sortedListX.get(mid).getX(); //把点分成左右相等的两部分的直线的横坐标,设这条直线为L //L左边的点的横坐标升序排序的数组
List<Point> sortedListXL=sortedListX.subList(0, mid); //L右边的点的横坐标升序排序的数组
List<Point> sortedListXR=sortedListX.subList(mid, sortedListX.size()); List<Point> sortedListYL=new ArrayList<>(); //L左边的点的纵坐标升序排序的数组
List<Point> sortedListYR=new ArrayList<>(); //L右边的点的纵坐标升序排序的数组 //求sortedListYL与sortedListYR
for(int i=0;i<sortedListY.size();i++){
Point p=sortedListY.get(i);
if(sortedListY.get(i).getX()<L){
sortedListYL.add(p);
}else{
sortedListYR.add(p);
}
} double dL=divide(sortedListXL,sortedListYL); //L左边两个点之间的最短距离
double dR=divide(sortedListXR,sortedListYR); //L右边两个点之间的最短距离 //比较L左边最短距离、L右边最短距离以及跨越L的顶点对之间的最短距离
return conquer(sortedListY,L,Math.min(dL, dR));
}//else
} //子问题解的合并
public static double conquer(List<Point> sortedListY,double L,double d){
//求在L-d以及L+d之间的顶点(2d-strip)
List<Point> inside2DList=new ArrayList<>();
for(int i=0;i<sortedListY.size();i++){
Point p=sortedListY.get(i);
if(p.getX()>L-d || p.getX()<L+d){
inside2DList.add(p);
}
} //求2d-strip之间顶点对的最短距离、与L左边和右边的最短距离比较,最小者为最终结果
double minDistance=d;
for(int i=0;i<inside2DList.size()-1;i++){
//i只需与i之后的11个顶点比较,i与大于11个顶点之后的顶点的距离一定大于等于d
for(int j=i+1;j<=i+11 && j<inside2DList.size();j++){
double temp=dist(inside2DList.get(i),inside2DList.get(j));
if(temp<minDistance)
minDistance=temp;
}
}
return minDistance;
} //计算两点之间的距离
public static double dist(Point a,Point b){
return Math.sqrt(Math.pow(a.getX()-b.getX(), 2)+Math.pow(a.getY()-b.getY(), 2));
} //蛮力法
public static double bruteforce(List<Point> pointList){
double minDistance=Double.MAX_VALUE;
//依次比较每个顶点对
for(int i=0;i<pointList.size();i++){
for(int j=i+1;j<pointList.size();j++){
double temp=dist(pointList.get(i),pointList.get(j));
if(temp<minDistance)
minDistance=temp;
}
}
return minDistance;
}
} class Point{
private double x; //横坐标
private double y; //纵坐标 public Point(int x,int y){
this.x=x;
this.y=y;
} public double getX() {
return x;
} public void setX(double x) {
this.x = x;
} public double getY() {
return y;
} public void setY(double y) {
this.y = y;
} public String toString(){
return x+","+y;
}
}

Expm 3_2 寻找最邻近的点对的更多相关文章

  1. 机器学习 第4篇:sklearn 最邻近算法概述

    sklearn.neighbors 提供了针对无监督和受监督的基于邻居的学习方法的功能.监督的基于最邻近的机器学习算法是值:对带标签的数据的分类和对连续数据的预测(回归). 无监督的最近算法是许多其他 ...

  2. 机器学习 第5篇:knn回归

    基于最邻近算法的分类,本质上是对离散的数据标签进行预测,实际上,最邻近算法也可以用于对连续的数据标签进行预测,这种方法叫做基于最邻近数据的回归,预测的值(即数据的标签)是连续值,通过计算数据点最临近数 ...

  3. [Elasticsearch] 邻近匹配 (三) - 性能,关联单词查询以及Shingles

    提高性能 短语和邻近度查询比简单的match查询在性能上更昂贵.match查询仅仅是查看词条是否存在于倒排索引(Inverted Index)中,而match_phrase查询则须要计算和比較多个可能 ...

  4. [Elasticsearch] 邻近匹配 (一) - 短语匹配以及slop參数

    本文翻译自Elasticsearch官方指南的Proximity Matching一章. 邻近匹配(Proximity Matching) 使用了TF/IDF的标准全文搜索将文档,或者至少文档中的每一 ...

  5. [LeetCode] Find the Celebrity 寻找名人

    Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...

  6. [LeetCode] Find Minimum in Rotated Sorted Array II 寻找旋转有序数组的最小值之二

    Follow up for "Find Minimum in Rotated Sorted Array":What if duplicates are allowed? Would ...

  7. [LeetCode] Find Minimum in Rotated Sorted Array 寻找旋转有序数组的最小值

    Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...

  8. C语言 · 寻找数组中的最大值

    问题描述 对于给定整数数组a[],寻找其中最大值,并返回下标. 输入格式 整数数组a[],数组元素个数小于1等于100.输出数据分作两行:第一行只有一个数,表示数组元素个数:第二行为数组的各个元素. ...

  9. 【跟着子迟品 underscore】如何优雅地写一个『在数组中寻找指定元素』的方法

    Why underscore (觉得这部分眼熟的可以直接跳到下一段了...) 最近开始看 underscore.js 源码,并将 underscore.js 源码解读 放在了我的 2016 计划中. ...

随机推荐

  1. A1073. Scientific Notation

    Scientific notation is the way that scientists easily handle very large numbers or very small number ...

  2. random模块(十九)

    1 ).random() 返回0<=n<1之间的随机实数n: 2 ).choice(seq) 从序列seq中返回随机的元素: 3 ).getrandbits(n) 以长整型形式返回n个随机 ...

  3. c输出格式

    #include <stdio.h> #include <stdlib.h> #include <math.h> int main() { //取整 printf( ...

  4. 窗体监听事件WindowListener

    EXIT_ON_CLOSE:结束窗口所在的应用程序.在窗口被关闭的时候会退出JVM. DISPOSE_ON_CLOSE:隐藏当前窗口,并释放此窗体占有的资源.如果程序没有其他线程在运行,当所有窗口都被 ...

  5. 化工pdf下载

    Python爬虫视频教程零基础小白到scrapy爬虫高手-轻松入门 https://item.taobao.com/item.htm?spm=a1z38n.10677092.0.0.482434a6E ...

  6. Kafka 0.10问题点滴

    15.如何消费内部topic: __consumer_offsets 主要是要让它来格式化:GroupMetadataManager.OffsetsMessageFormatter 最后用看了它的源码 ...

  7. 内联函数 —— C 中关键字 inline 用法解析

    一.什么是内联函数 在C语言中,如果一些函数被频繁调用,不断地有函数入栈,即函数栈,会造成栈空间或栈内存的大量消耗. 为了解决这个问题,特别的引入了inline修饰符,表示为内联函数. 栈空间就是指放 ...

  8. C#星夜拾遗之delegate示例

    概念 delegate即委托.如果你使用过C++或者js中的回调函数,你会更容易明白一些.在异步操作中常常使用回调函数,例如在Ajax中,当HttpRequest执行异步请求时,就需要有一个状态改变时 ...

  9. golang数组声明

    格式 初始化数组 {}中的元素数不能大于[]中的数字,并且长度在初始化后不能改变,定义数组时需指定长度 ... var arrName [num]type = [num]type{value, val ...

  10. python学习笔记8--面向对象编程

    一.面向对象编程 面向对象--Object Oriented Programming,简称oop,是一种程序设计思想.在说面向对象之前,先说一下什么是编程范式,编程范式你按照什么方式来去编程,去实现一 ...